Summary: | In this article, we propose a novel variational model for restoring images in the presence of the mixture of Cauchy and Gaussian noise. The model involves a novel data-fidelity term that features the mixed noise as an infimal convolution of two noise distributions and total variation regularization. This data-fidelity term contributes to suitable separation of Cauchy noise and Gaussian noise components, facilitating simultaneous removal of the mixed noise. Besides, the total variation regularization enables adequate denoising in homogeneous regions while conserving edges. Despite the nonconvexity of the model, the existence of a solution is proven. By employing an alternating minimization approach and the alternating direction method of multipliers, we present an iterative algorithm for solving the proposed model. Experimental results validate the effectiveness of the proposed model compared to other existing models according to both visual quality and some image quality measurements.
|