Rotor position angle control of permanent magnet synchronous motor based on sliding mode extended state observer

To achieve fast, accurate control of the position angle of the rotor of permanent magnet synchronous motor (PMSM), traditional auto disturbance rejection control often has many adjustable parameters and complex tuning problems. Sliding mode control technology is introduced into the extended state ob...

Full description

Bibliographic Details
Main Authors: Chao Wang, Bingyou Liu, Xuan Fan, Pan Yang
Format: Article
Language:English
Published: Taylor & Francis Group 2022-12-01
Series:Systems Science & Control Engineering
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/21642583.2022.2110540
Description
Summary:To achieve fast, accurate control of the position angle of the rotor of permanent magnet synchronous motor (PMSM), traditional auto disturbance rejection control often has many adjustable parameters and complex tuning problems. Sliding mode control technology is introduced into the extended state observer (ESO) part of the auto disturbance rejection controller, and a new sliding mode approach law is designed based on several typical sliding mode approaches, which simplifies parameter tuning while retaining the original anti-interference performance of auto disturbance. In addition, the nonlinear state error feedback control law in active disturbance rejection control is enhanced to improve the component order PID control law, which can improve the response speed and robustness of the system, and prove the stability of the controller. Finally, the simulation of the PMSM rotor position control system based on the sliding mode ESO is carried out, and the results verify the validity of the method.
ISSN:2164-2583