Summary: | An improved Sage-Husa extended Kalman filter (SHEKF) algorithm is intended to improve the accuracy and stability of SOC prediction. In this paper, two different exponential weighting algorithms are used to adaptively select the forgetting factor for adaptive noise estimation. Moreover, the OCV-SOC curve is obtained using a 7-segment linear fitting method before the algorithms estimate the SOC. In addition, by combining this improved method with a third-order RC equivalent circuit model in the dynamic stress test (DST) case the convergence time is reduced by 0.15 s compared to the second-order RC equivalent circuit model. Following that, four different types of comparison experiments are carried out by comparing the improved algorithm to EKF and other SHEKF algorithms.The estimation accuracy under DST conditions of 0 °C, 25 °C and 45 °C is approximately 0.5%, 2.2% and 1.3% improvement compared to the EKF algorithm.
|