Switching Failure Mechanism in Zinc Peroxide-Based Programmable Metallization Cell

Abstract The impact of peroxide surface treatment on the resistive switching characteristics of zinc peroxide (ZnO2)-based programmable metallization cell (PMC) devices is investigated. The peroxide treatment results in a ZnO hexagonal to ZnO2 cubic phase transformation; however, an excessive treatm...

Full description

Bibliographic Details
Main Authors: Firman Mangasa Simanjuntak, Sridhar Chandrasekaran, Chun-Chieh Lin, Tseung-Yuen Tseng
Format: Article
Language:English
Published: SpringerOpen 2018-10-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11671-018-2743-7
Description
Summary:Abstract The impact of peroxide surface treatment on the resistive switching characteristics of zinc peroxide (ZnO2)-based programmable metallization cell (PMC) devices is investigated. The peroxide treatment results in a ZnO hexagonal to ZnO2 cubic phase transformation; however, an excessive treatment results in crystalline decomposition. The chemically synthesized ZnO2 promotes the occurrence of switching behavior in Cu/ZnO2/ZnO/ITO with much lower operation current as compared to the Cu/ZnO/ITO (control device). However, the switching stability degrades as performing the peroxide treatment for a longer time. We suggest that the microstructure of the ZnO2 is responsible for this degradation behavior and fine tuning on ZnO2 properties, which is necessary to achieve proper switching characteristics in ZnO2-based PMC devices.
ISSN:1931-7573
1556-276X