Bifunctional Polymeric Carbon Nitride via Tuning Fabrication Conditions for Photocatalysis

In this contribution, the hydrogen evolution reaction and photodegradation of Rhodamine B (RhB) dye were studied using urea-based polymeric carbon nitride (PCN) as photocatalyst. The effects of calcination temperature and heating rate of the PCN on structural, morphological, optical, photoelectroche...

Full description

Bibliographic Details
Main Authors: Malgorzata Aleksandrzak, Daria Baranowska, Wojciech Kukulka, Magdalena Onyszko, Beata Zielinska, Ewa Mijowska
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/11/6/651
Description
Summary:In this contribution, the hydrogen evolution reaction and photodegradation of Rhodamine B (RhB) dye were studied using urea-based polymeric carbon nitride (PCN) as photocatalyst. The effects of calcination temperature and heating rate of the PCN on structural, morphological, optical, photoelectrochemical, and photocatalytic properties were addressed. Different properties were found to be crucial in boosting photocatalytic performance dependending on the reaction type. The highest efficiency in hydrogen evolution was observed in the presence of PCN characterized by the superior charge transport and charge lifetime properties arising from higher degree of structural arrangement and lower defect content in comparison to that of other photocatalysts. However, photocatalytic degradation of RhB was the most powerful when the catalyst exhibited the highest specific surface area as a key parameter determining its efficiency, although it presented lower charge transport and charge carrier properties.
ISSN:2073-4344