Optimal Sr-Doped Free TiO2@SrTiO3 Heterostructured Nanowire Arrays for High-Efficiency Self-Powered Photoelectrochemical UV Photodetector Applications
Due to their high performance, photoelectrochemical ultraviolet (UV) photodetectors have attracted much attention, but the recombination of photogenerated electrons at the interface of photoanode/electrolyte limited further improvement of photoelectrochemical UV photodetectors (PEC UVPDs). Modificat...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-03-01
|
Series: | Crystals |
Subjects: | |
Online Access: | http://www.mdpi.com/2073-4352/9/3/134 |
_version_ | 1798040148303151104 |
---|---|
author | Shiming Ni Fengyun Guo Dongbo Wang Shujie Jiao Jinzhong Wang Yong Zhang Bao Wang Liancheng Zhao |
author_facet | Shiming Ni Fengyun Guo Dongbo Wang Shujie Jiao Jinzhong Wang Yong Zhang Bao Wang Liancheng Zhao |
author_sort | Shiming Ni |
collection | DOAJ |
description | Due to their high performance, photoelectrochemical ultraviolet (UV) photodetectors have attracted much attention, but the recombination of photogenerated electrons at the interface of photoanode/electrolyte limited further improvement of photoelectrochemical UV photodetectors (PEC UVPDs). Modification of TiO2 photoanode by SrTiO3 could improve the performance of UVPD, because the energy barrier that is established at the TiO2–SrTiO3 interface could accelerate the separation of the photogenerated electrons-holes pair. However, the recombination center that is caused by the preparation of TiO2@SrTiO3 core-shell heterostructured nanostructure decreases the performance of PEC UVPDs, which is still an important problem that hindered its application in PEC UVPDs. In this paper, we presented a Sr-doped free TiO2@SrTiO3 core-shell heterostructured nanowire arrays as a photoanode for the self-powered PEC UVPD. This will not only accelerate the separation of the photogenerated electrons-holes pair, but it will also reduce the recombination of photogenerated electron-hole pairs in the photoanode. The intrinsic effect of SrTiO3 reaction time on the J variations of UVPDs is investigated in detail. An impressive responsivity of 0.358 A·W−1 was achieved at 360 nm for the UVPD based on TiO2@SrTiO3 core-shell heterostructured nanowire arrays, which heretofore is a considerably high photoresponsivity for self-powered photoelectrochemical UVPDs. Additionally, this UVPD also exhibits a high on/off ratio, fast response time, excellent visible-blind characteristic, and linear optical signal response. |
first_indexed | 2024-04-11T22:03:27Z |
format | Article |
id | doaj.art-aa7d833e2f284ac49ed0173e35804910 |
institution | Directory Open Access Journal |
issn | 2073-4352 |
language | English |
last_indexed | 2024-04-11T22:03:27Z |
publishDate | 2019-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Crystals |
spelling | doaj.art-aa7d833e2f284ac49ed0173e358049102022-12-22T04:00:48ZengMDPI AGCrystals2073-43522019-03-019313410.3390/cryst9030134cryst9030134Optimal Sr-Doped Free TiO2@SrTiO3 Heterostructured Nanowire Arrays for High-Efficiency Self-Powered Photoelectrochemical UV Photodetector ApplicationsShiming Ni0Fengyun Guo1Dongbo Wang2Shujie Jiao3Jinzhong Wang4Yong Zhang5Bao Wang6Liancheng Zhao7Department of Optoelectronic Information Science, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, ChinaDepartment of Optoelectronic Information Science, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, ChinaDepartment of Optoelectronic Information Science, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, ChinaDepartment of Optoelectronic Information Science, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, ChinaDepartment of Optoelectronic Information Science, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, ChinaDepartment of Optoelectronic Information Science, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, ChinaDepartment of Optoelectronic Information Science, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, ChinaDepartment of Optoelectronic Information Science, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, ChinaDue to their high performance, photoelectrochemical ultraviolet (UV) photodetectors have attracted much attention, but the recombination of photogenerated electrons at the interface of photoanode/electrolyte limited further improvement of photoelectrochemical UV photodetectors (PEC UVPDs). Modification of TiO2 photoanode by SrTiO3 could improve the performance of UVPD, because the energy barrier that is established at the TiO2–SrTiO3 interface could accelerate the separation of the photogenerated electrons-holes pair. However, the recombination center that is caused by the preparation of TiO2@SrTiO3 core-shell heterostructured nanostructure decreases the performance of PEC UVPDs, which is still an important problem that hindered its application in PEC UVPDs. In this paper, we presented a Sr-doped free TiO2@SrTiO3 core-shell heterostructured nanowire arrays as a photoanode for the self-powered PEC UVPD. This will not only accelerate the separation of the photogenerated electrons-holes pair, but it will also reduce the recombination of photogenerated electron-hole pairs in the photoanode. The intrinsic effect of SrTiO3 reaction time on the J variations of UVPDs is investigated in detail. An impressive responsivity of 0.358 A·W−1 was achieved at 360 nm for the UVPD based on TiO2@SrTiO3 core-shell heterostructured nanowire arrays, which heretofore is a considerably high photoresponsivity for self-powered photoelectrochemical UVPDs. Additionally, this UVPD also exhibits a high on/off ratio, fast response time, excellent visible-blind characteristic, and linear optical signal response.http://www.mdpi.com/2073-4352/9/3/134Sr–doped freeTiO2@SrTiO3self-poweredphotoelectrochemicalUV photodetector |
spellingShingle | Shiming Ni Fengyun Guo Dongbo Wang Shujie Jiao Jinzhong Wang Yong Zhang Bao Wang Liancheng Zhao Optimal Sr-Doped Free TiO2@SrTiO3 Heterostructured Nanowire Arrays for High-Efficiency Self-Powered Photoelectrochemical UV Photodetector Applications Crystals Sr–doped free TiO2@SrTiO3 self-powered photoelectrochemical UV photodetector |
title | Optimal Sr-Doped Free TiO2@SrTiO3 Heterostructured Nanowire Arrays for High-Efficiency Self-Powered Photoelectrochemical UV Photodetector Applications |
title_full | Optimal Sr-Doped Free TiO2@SrTiO3 Heterostructured Nanowire Arrays for High-Efficiency Self-Powered Photoelectrochemical UV Photodetector Applications |
title_fullStr | Optimal Sr-Doped Free TiO2@SrTiO3 Heterostructured Nanowire Arrays for High-Efficiency Self-Powered Photoelectrochemical UV Photodetector Applications |
title_full_unstemmed | Optimal Sr-Doped Free TiO2@SrTiO3 Heterostructured Nanowire Arrays for High-Efficiency Self-Powered Photoelectrochemical UV Photodetector Applications |
title_short | Optimal Sr-Doped Free TiO2@SrTiO3 Heterostructured Nanowire Arrays for High-Efficiency Self-Powered Photoelectrochemical UV Photodetector Applications |
title_sort | optimal sr doped free tio2 srtio3 heterostructured nanowire arrays for high efficiency self powered photoelectrochemical uv photodetector applications |
topic | Sr–doped free TiO2@SrTiO3 self-powered photoelectrochemical UV photodetector |
url | http://www.mdpi.com/2073-4352/9/3/134 |
work_keys_str_mv | AT shimingni optimalsrdopedfreetio2srtio3heterostructurednanowirearraysforhighefficiencyselfpoweredphotoelectrochemicaluvphotodetectorapplications AT fengyunguo optimalsrdopedfreetio2srtio3heterostructurednanowirearraysforhighefficiencyselfpoweredphotoelectrochemicaluvphotodetectorapplications AT dongbowang optimalsrdopedfreetio2srtio3heterostructurednanowirearraysforhighefficiencyselfpoweredphotoelectrochemicaluvphotodetectorapplications AT shujiejiao optimalsrdopedfreetio2srtio3heterostructurednanowirearraysforhighefficiencyselfpoweredphotoelectrochemicaluvphotodetectorapplications AT jinzhongwang optimalsrdopedfreetio2srtio3heterostructurednanowirearraysforhighefficiencyselfpoweredphotoelectrochemicaluvphotodetectorapplications AT yongzhang optimalsrdopedfreetio2srtio3heterostructurednanowirearraysforhighefficiencyselfpoweredphotoelectrochemicaluvphotodetectorapplications AT baowang optimalsrdopedfreetio2srtio3heterostructurednanowirearraysforhighefficiencyselfpoweredphotoelectrochemicaluvphotodetectorapplications AT lianchengzhao optimalsrdopedfreetio2srtio3heterostructurednanowirearraysforhighefficiencyselfpoweredphotoelectrochemicaluvphotodetectorapplications |