Crosslinking Mechanisms of Phenol, Catechol, and Gallol for Synthetic Polyphenols: A Comparative Review

Since the first introduction of a synthetic polyphenol called polydopamine, both it and its derivatives have received significant attention from material scientists owing to their unique functionality. In particular, synthetic polyphenols have been utilized as interfacial engineering tools; many imp...

Full description

Bibliographic Details
Main Authors: Hyunbin Choi, Kyueui Lee
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/22/11626
Description
Summary:Since the first introduction of a synthetic polyphenol called polydopamine, both it and its derivatives have received significant attention from material scientists owing to their unique functionality. In particular, synthetic polyphenols have been utilized as interfacial engineering tools; many important review papers have been published regarding this topic. However, despite those that have focused on the applicability of synthetic polyphenols, fundamental aspects of crosslinking mechanisms and resultant characteristics have still been overlooked in the community. This review covers the mechanisms for building synthetic polyphenols, which are dependent on the number of hydroxyl groups of each phenolic building block. The inherent physicochemical properties of the developed polyphenolic materials are discussed in depth herein. This review can provide guidelines for selecting appropriate phenolic building blocks when designing relevant polyphenolic biomaterials.
ISSN:2076-3417