Boundary Value Problems in Thermo Viscoplasticity

In this work, we study two uncoupled quasistatic problems for thermo viscoplastic materials. In the model of the equation of generalised thermo viscoplasticity, both the elastic and the plastic rate of deformation depend on a parameter $\theta $ which may be interpreted as the absolute temperature....

Full description

Bibliographic Details
Main Authors: Ilyas Boukaroura, Seddik Djabi, Samia Khelladi
Format: Article
Language:English
Published: University of Maragheh 2021-12-01
Series:Sahand Communications in Mathematical Analysis
Subjects:
Online Access:https://scma.maragheh.ac.ir/article_246178_f12cdb82487b0b2d05c87715398f0e46.pdf
_version_ 1818018711930404864
author Ilyas Boukaroura
Seddik Djabi
Samia Khelladi
author_facet Ilyas Boukaroura
Seddik Djabi
Samia Khelladi
author_sort Ilyas Boukaroura
collection DOAJ
description In this work, we study two uncoupled quasistatic problems for thermo viscoplastic materials. In the model of the equation of generalised thermo viscoplasticity, both the elastic and the plastic rate of deformation depend on a parameter $\theta $ which may be interpreted as the absolute temperature. The boundary conditions considered here as displacement-traction conditions as well as unilateral contact conditions. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem, reducing the isotherm problem to an ordinary differential equation in a Hilbert space.
first_indexed 2024-04-14T07:42:28Z
format Article
id doaj.art-aa8c5f026c854563a6b934f89ccbdfa6
institution Directory Open Access Journal
issn 2322-5807
2423-3900
language English
last_indexed 2024-04-14T07:42:28Z
publishDate 2021-12-01
publisher University of Maragheh
record_format Article
series Sahand Communications in Mathematical Analysis
spelling doaj.art-aa8c5f026c854563a6b934f89ccbdfa62022-12-22T02:05:26ZengUniversity of MaraghehSahand Communications in Mathematical Analysis2322-58072423-39002021-12-01184193010.22130/scma.2021.127385.797246178Boundary Value Problems in Thermo ViscoplasticityIlyas Boukaroura0Seddik Djabi1Samia Khelladi2Department of Mathematics, Faculty of Science, Applied Mathematics Laboratory, Ferhat Abbas- Setif 1 University, Setif, AlgeriaDepartment of Mathematics, Faculty of Science, Applied Mathematics Laboratory, Ferhat Abbas- Setif 1 University, Setif, AlgeriaDepartment of Mathematics, Faculty of Science, Fundamental and Numerical Mathematics Laboratory, Ferhat Abbas- Setif 1 University, Setif, AlgeriaIn this work, we study two uncoupled quasistatic problems for thermo viscoplastic materials. In the model of the equation of generalised thermo viscoplasticity, both the elastic and the plastic rate of deformation depend on a parameter $\theta $ which may be interpreted as the absolute temperature. The boundary conditions considered here as displacement-traction conditions as well as unilateral contact conditions. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem, reducing the isotherm problem to an ordinary differential equation in a Hilbert space.https://scma.maragheh.ac.ir/article_246178_f12cdb82487b0b2d05c87715398f0e46.pdfviscoplastictemperaturevariational inequalitycauchy-lipschitz method
spellingShingle Ilyas Boukaroura
Seddik Djabi
Samia Khelladi
Boundary Value Problems in Thermo Viscoplasticity
Sahand Communications in Mathematical Analysis
viscoplastic
temperature
variational inequality
cauchy-lipschitz method
title Boundary Value Problems in Thermo Viscoplasticity
title_full Boundary Value Problems in Thermo Viscoplasticity
title_fullStr Boundary Value Problems in Thermo Viscoplasticity
title_full_unstemmed Boundary Value Problems in Thermo Viscoplasticity
title_short Boundary Value Problems in Thermo Viscoplasticity
title_sort boundary value problems in thermo viscoplasticity
topic viscoplastic
temperature
variational inequality
cauchy-lipschitz method
url https://scma.maragheh.ac.ir/article_246178_f12cdb82487b0b2d05c87715398f0e46.pdf
work_keys_str_mv AT ilyasboukaroura boundaryvalueproblemsinthermoviscoplasticity
AT seddikdjabi boundaryvalueproblemsinthermoviscoplasticity
AT samiakhelladi boundaryvalueproblemsinthermoviscoplasticity