Approximation properties of λ-Kantorovich operators

Abstract In the present paper, we study a new type of Bernstein operators depending on the parameter λ∈[−1,1] $\lambda\in[-1,1]$. The Kantorovich modification of these sequences of linear positive operators will be considered. A quantitative Voronovskaja type theorem by means of Ditzian–Totik modulu...

وصف كامل

التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ana-Maria Acu, Nesibe Manav, Daniel Florin Sofonea
التنسيق: مقال
اللغة:English
منشور في: SpringerOpen 2018-08-01
سلاسل:Journal of Inequalities and Applications
الموضوعات:
الوصول للمادة أونلاين:http://link.springer.com/article/10.1186/s13660-018-1795-7
الوصف
الملخص:Abstract In the present paper, we study a new type of Bernstein operators depending on the parameter λ∈[−1,1] $\lambda\in[-1,1]$. The Kantorovich modification of these sequences of linear positive operators will be considered. A quantitative Voronovskaja type theorem by means of Ditzian–Totik modulus of smoothness is proved. Also, a Grüss–Voronovskaja type theorem for λ-Kantorovich operators is provided. Some numerical examples which show the relevance of the results are given.
تدمد:1029-242X