Approximation properties of λ-Kantorovich operators
Abstract In the present paper, we study a new type of Bernstein operators depending on the parameter λ∈[−1,1] $\lambda\in[-1,1]$. The Kantorovich modification of these sequences of linear positive operators will be considered. A quantitative Voronovskaja type theorem by means of Ditzian–Totik modulu...
المؤلفون الرئيسيون: | , , |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
SpringerOpen
2018-08-01
|
سلاسل: | Journal of Inequalities and Applications |
الموضوعات: | |
الوصول للمادة أونلاين: | http://link.springer.com/article/10.1186/s13660-018-1795-7 |
الملخص: | Abstract In the present paper, we study a new type of Bernstein operators depending on the parameter λ∈[−1,1] $\lambda\in[-1,1]$. The Kantorovich modification of these sequences of linear positive operators will be considered. A quantitative Voronovskaja type theorem by means of Ditzian–Totik modulus of smoothness is proved. Also, a Grüss–Voronovskaja type theorem for λ-Kantorovich operators is provided. Some numerical examples which show the relevance of the results are given. |
---|---|
تدمد: | 1029-242X |