When is an Incomplete 3 × n Latin Rectangle Completable?

We use the concept of an availability matrix, introduced in Euler [7], to describe the family of all minimal incomplete 3 × n latin rectangles that are not completable. We also present a complete description of minimal incomplete such latin squares of order 4.

Bibliographic Details
Main Authors: Euler Reinhardt, Oleksik Paweł
Format: Article
Language:English
Published: University of Zielona Góra 2013-03-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.1648
_version_ 1827832801966161920
author Euler Reinhardt
Oleksik Paweł
author_facet Euler Reinhardt
Oleksik Paweł
author_sort Euler Reinhardt
collection DOAJ
description We use the concept of an availability matrix, introduced in Euler [7], to describe the family of all minimal incomplete 3 × n latin rectangles that are not completable. We also present a complete description of minimal incomplete such latin squares of order 4.
first_indexed 2024-03-12T05:19:59Z
format Article
id doaj.art-aa9b72cb0ac342edbdc964449972529c
institution Directory Open Access Journal
issn 2083-5892
language English
last_indexed 2024-03-12T05:19:59Z
publishDate 2013-03-01
publisher University of Zielona Góra
record_format Article
series Discussiones Mathematicae Graph Theory
spelling doaj.art-aa9b72cb0ac342edbdc964449972529c2023-09-03T07:47:13ZengUniversity of Zielona GóraDiscussiones Mathematicae Graph Theory2083-58922013-03-01331576910.7151/dmgt.1648When is an Incomplete 3 × n Latin Rectangle Completable?Euler Reinhardt0Oleksik Paweł1Université Européenne de Bretagne and Lab-STICC, CNRS, UMR 6285, Université de Brest, B.P.809, 20 Avenue Le Gorgeu, 29285 Brest Cedex, FranceAGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Department of Geoinformatics and Applied Computer Science, 30-059 Cracow, PolandWe use the concept of an availability matrix, introduced in Euler [7], to describe the family of all minimal incomplete 3 × n latin rectangles that are not completable. We also present a complete description of minimal incomplete such latin squares of order 4.https://doi.org/10.7151/dmgt.1648incomplete latin rectanglecompletabilitysolution space enumerationbranch-and-bound
spellingShingle Euler Reinhardt
Oleksik Paweł
When is an Incomplete 3 × n Latin Rectangle Completable?
Discussiones Mathematicae Graph Theory
incomplete latin rectangle
completability
solution space enumeration
branch-and-bound
title When is an Incomplete 3 × n Latin Rectangle Completable?
title_full When is an Incomplete 3 × n Latin Rectangle Completable?
title_fullStr When is an Incomplete 3 × n Latin Rectangle Completable?
title_full_unstemmed When is an Incomplete 3 × n Latin Rectangle Completable?
title_short When is an Incomplete 3 × n Latin Rectangle Completable?
title_sort when is an incomplete 3 n latin rectangle completable
topic incomplete latin rectangle
completability
solution space enumeration
branch-and-bound
url https://doi.org/10.7151/dmgt.1648
work_keys_str_mv AT eulerreinhardt whenisanincomplete3nlatinrectanglecompletable
AT oleksikpaweł whenisanincomplete3nlatinrectanglecompletable