A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique

Abstract Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of...

Full description

Bibliographic Details
Main Authors: Adam E. Vorsino, Zhiyong Xi
Format: Article
Language:English
Published: BMC 2022-12-01
Series:Parasites & Vectors
Subjects:
Online Access:https://doi.org/10.1186/s13071-022-05522-1
_version_ 1811189025060421632
author Adam E. Vorsino
Zhiyong Xi
author_facet Adam E. Vorsino
Zhiyong Xi
author_sort Adam E. Vorsino
collection DOAJ
description Abstract Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. Methods The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. Results As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. Conclusions Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. Graphic Abstract
first_indexed 2024-04-11T14:28:03Z
format Article
id doaj.art-aa9dd884a14441d7aace04dcfcf8a604
institution Directory Open Access Journal
issn 1756-3305
language English
last_indexed 2024-04-11T14:28:03Z
publishDate 2022-12-01
publisher BMC
record_format Article
series Parasites & Vectors
spelling doaj.art-aa9dd884a14441d7aace04dcfcf8a6042022-12-22T04:18:47ZengBMCParasites & Vectors1756-33052022-12-0115111110.1186/s13071-022-05522-1A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect techniqueAdam E. Vorsino0Zhiyong Xi1Strategic Habitat Conservation Program, Ecological Services, Pacific Islands Fish and Wildlife Office, U.S. Fish and Wildlife ServiceDepartment of Microbiology and Molecular Genetics, Michigan State UniversityAbstract Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. Methods The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. Results As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. Conclusions Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. Graphic Abstracthttps://doi.org/10.1186/s13071-022-05522-1Sterile insect techniqueIncompatible insect techniqueCulicidInfrastructureCost calculatorHawaiʻi
spellingShingle Adam E. Vorsino
Zhiyong Xi
A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique
Parasites & Vectors
Sterile insect technique
Incompatible insect technique
Culicid
Infrastructure
Cost calculator
Hawaiʻi
title A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique
title_full A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique
title_fullStr A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique
title_full_unstemmed A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique
title_short A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique
title_sort mass rearing cost calculator for the control of culex quinquefasciatus in hawai i using the incompatible insect technique
topic Sterile insect technique
Incompatible insect technique
Culicid
Infrastructure
Cost calculator
Hawaiʻi
url https://doi.org/10.1186/s13071-022-05522-1
work_keys_str_mv AT adamevorsino amassrearingcostcalculatorforthecontrolofculexquinquefasciatusinhawaiʻiusingtheincompatibleinsecttechnique
AT zhiyongxi amassrearingcostcalculatorforthecontrolofculexquinquefasciatusinhawaiʻiusingtheincompatibleinsecttechnique
AT adamevorsino massrearingcostcalculatorforthecontrolofculexquinquefasciatusinhawaiʻiusingtheincompatibleinsecttechnique
AT zhiyongxi massrearingcostcalculatorforthecontrolofculexquinquefasciatusinhawaiʻiusingtheincompatibleinsecttechnique