Ultrasound-assisted hydration of finger millet (Eleusine Coracana) and its effects on starch isolates and antinutrients
Finger millet (Eleusine Coracana) is rich in nutrients and minerals. The iron and calcium contents are comparatively higher than other cereal crops. Finger millet also has some antinutrients such as tannins and phytates, that needs to be removed for maximum health benefits. Traditionally, these anti...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-05-01
|
Series: | Ultrasonics Sonochemistry |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1350417721000845 |
_version_ | 1818579032921341952 |
---|---|
author | Shweta Yadav Sabyasachi Mishra Rama Chandra Pradhan |
author_facet | Shweta Yadav Sabyasachi Mishra Rama Chandra Pradhan |
author_sort | Shweta Yadav |
collection | DOAJ |
description | Finger millet (Eleusine Coracana) is rich in nutrients and minerals. The iron and calcium contents are comparatively higher than other cereal crops. Finger millet also has some antinutrients such as tannins and phytates, that needs to be removed for maximum health benefits. Traditionally, these antinutrients are removed by the hydration process. The conventional hydration process is time cumbersome and often results in poor quality grains. Ultrasonication during hydration of finger millet could reduce the processing time and antinutrient content in finger millet. The ultrasound amplitude, treatment time, and grain to water ratio during hydration were optimized. An ultrasound amplitude of 66%, treatment time of 26 min, and a grain to water ratio of 1:3 resulted in best desirability parameters with a reduction in phytate and tannin contents of the finger millet by 66.98 and 62.83%, respectively. Ultrasonication during hydration increased the water binding capacity and solubility of the finger millet starch. XRD study of the starch isolates confirmed the increased crystallinity of the particles. FESEM of the starch isolates also confirmed that ultrasound-assisted hydration of finger millet resulted in the desired size reduction and homogeneous distribution of starch particles. The optimized ultrasound-assisted hydration could be adopted and scaled up for bulk processing of finger millets. |
first_indexed | 2024-12-16T06:55:16Z |
format | Article |
id | doaj.art-aa9f84eac96942ae8cefdd4a854816b8 |
institution | Directory Open Access Journal |
issn | 1350-4177 |
language | English |
last_indexed | 2024-12-16T06:55:16Z |
publishDate | 2021-05-01 |
publisher | Elsevier |
record_format | Article |
series | Ultrasonics Sonochemistry |
spelling | doaj.art-aa9f84eac96942ae8cefdd4a854816b82022-12-21T22:40:18ZengElsevierUltrasonics Sonochemistry1350-41772021-05-0173105542Ultrasound-assisted hydration of finger millet (Eleusine Coracana) and its effects on starch isolates and antinutrientsShweta Yadav0Sabyasachi Mishra1Rama Chandra Pradhan2Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, IndiaCorresponding author.; Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, IndiaDepartment of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, IndiaFinger millet (Eleusine Coracana) is rich in nutrients and minerals. The iron and calcium contents are comparatively higher than other cereal crops. Finger millet also has some antinutrients such as tannins and phytates, that needs to be removed for maximum health benefits. Traditionally, these antinutrients are removed by the hydration process. The conventional hydration process is time cumbersome and often results in poor quality grains. Ultrasonication during hydration of finger millet could reduce the processing time and antinutrient content in finger millet. The ultrasound amplitude, treatment time, and grain to water ratio during hydration were optimized. An ultrasound amplitude of 66%, treatment time of 26 min, and a grain to water ratio of 1:3 resulted in best desirability parameters with a reduction in phytate and tannin contents of the finger millet by 66.98 and 62.83%, respectively. Ultrasonication during hydration increased the water binding capacity and solubility of the finger millet starch. XRD study of the starch isolates confirmed the increased crystallinity of the particles. FESEM of the starch isolates also confirmed that ultrasound-assisted hydration of finger millet resulted in the desired size reduction and homogeneous distribution of starch particles. The optimized ultrasound-assisted hydration could be adopted and scaled up for bulk processing of finger millets.http://www.sciencedirect.com/science/article/pii/S1350417721000845Finger milletUltrasoundHydrationAntinutrientsStarch quality |
spellingShingle | Shweta Yadav Sabyasachi Mishra Rama Chandra Pradhan Ultrasound-assisted hydration of finger millet (Eleusine Coracana) and its effects on starch isolates and antinutrients Ultrasonics Sonochemistry Finger millet Ultrasound Hydration Antinutrients Starch quality |
title | Ultrasound-assisted hydration of finger millet (Eleusine Coracana) and its effects on starch isolates and antinutrients |
title_full | Ultrasound-assisted hydration of finger millet (Eleusine Coracana) and its effects on starch isolates and antinutrients |
title_fullStr | Ultrasound-assisted hydration of finger millet (Eleusine Coracana) and its effects on starch isolates and antinutrients |
title_full_unstemmed | Ultrasound-assisted hydration of finger millet (Eleusine Coracana) and its effects on starch isolates and antinutrients |
title_short | Ultrasound-assisted hydration of finger millet (Eleusine Coracana) and its effects on starch isolates and antinutrients |
title_sort | ultrasound assisted hydration of finger millet eleusine coracana and its effects on starch isolates and antinutrients |
topic | Finger millet Ultrasound Hydration Antinutrients Starch quality |
url | http://www.sciencedirect.com/science/article/pii/S1350417721000845 |
work_keys_str_mv | AT shwetayadav ultrasoundassistedhydrationoffingermilleteleusinecoracanaanditseffectsonstarchisolatesandantinutrients AT sabyasachimishra ultrasoundassistedhydrationoffingermilleteleusinecoracanaanditseffectsonstarchisolatesandantinutrients AT ramachandrapradhan ultrasoundassistedhydrationoffingermilleteleusinecoracanaanditseffectsonstarchisolatesandantinutrients |