Study of In-Plane Mechanical Properties of Novel Ellipse-Based Chiral Honeycomb Structure

In this paper, we propose an elliptical anti-tetrachiral honeycombs structure (E-antitet) with in-plane negative Poisson’s ratio (NPR) and orthogonal anisotropy. The analytical and numerical solutions of the in-plane Poisson’s ratio and Young’s modulus are given by theoretical derivations and finite...

Full description

Bibliographic Details
Main Authors: Wei Wang, Jianjie Wang, Hong Hai, Weikai Xu, Xiaoming Yu
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/20/10437
Description
Summary:In this paper, we propose an elliptical anti-tetrachiral honeycombs structure (E-antitet) with in-plane negative Poisson’s ratio (NPR) and orthogonal anisotropy. The analytical and numerical solutions of the in-plane Poisson’s ratio and Young’s modulus are given by theoretical derivations and finite element method (FEM) numerical simulations and are verified experimentally by a 3D printed sample. Finally, we analyzed the influences of different parameters on the in-plane Poisson’s ratio and Young’s modulus of E-antitet. The results show that the proposed E-antitet can achieve a smaller Poisson’s ratio and larger Young’s modulus in the desired direction compared with the anti-tetrachiral honeycombs structure (antitet), and moreover, the E-antitet has a more flexible means of regulation than the antitet. The analytical results of this paper provide meaningful guidance for the design of chiral honeycomb structures.
ISSN:2076-3417