Identification of subphenotypes in critically ill thrombocytopenic patients with different responses to therapeutic interventions: a retrospective study
IntroductionThe causes of thrombocytopenia (TP) in critically ill patients are numerous and heterogeneous. Currently, subphenotype identification is a popular approach to address this problem. Therefore, this study aimed to identify subphenotypes that respond differently to therapeutic interventions...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-04-01
|
Series: | Frontiers in Medicine |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fmed.2023.1166896/full |
_version_ | 1797838662087475200 |
---|---|
author | Xuandong Jiang Weimin Zhang Yuting Pan Xuping Cheng |
author_facet | Xuandong Jiang Weimin Zhang Yuting Pan Xuping Cheng |
author_sort | Xuandong Jiang |
collection | DOAJ |
description | IntroductionThe causes of thrombocytopenia (TP) in critically ill patients are numerous and heterogeneous. Currently, subphenotype identification is a popular approach to address this problem. Therefore, this study aimed to identify subphenotypes that respond differently to therapeutic interventions in patients with TP using routine clinical data and to improve individualized management of TP.MethodsThis retrospective study included patients with TP admitted to the intensive care unit (ICU) of Dongyang People’s Hospital during 2010–2020. Subphenotypes were identified using latent profile analysis of 15 clinical variables. The Kaplan–Meier method was used to assess the risk of 30-day mortality for different subphenotypes. Multifactorial Cox regression analysis was used to analyze the relationship between therapeutic interventions and in-hospital mortality for different subphenotypes.ResultsThis study included a total of 1,666 participants. Four subphenotypes were identified by latent profile analysis, with subphenotype 1 being the most abundant and having a low mortality rate. Subphenotype 2 was characterized by respiratory dysfunction, subphenotype 3 by renal insufficiency, and subphenotype 4 by shock-like features. Kaplan–Meier analysis revealed that the four subphenotypes had different in-30-day mortality rates. The multivariate Cox regression analysis indicated a significant interaction between platelet transfusion and subphenotype, with more platelet transfusion associated with a decreased risk of in-hospital mortality in subphenotype 3 [hazard ratio (HR): 0.66, 95% confidence interval (CI): 0.46–0.94]. In addition, there was a significant interaction between fluid intake and subphenotype, with a higher fluid intake being associated with a decreased risk of in-hospital mortality for subphenotype 3 (HR: 0.94, 95% CI: 0.89–0.99 per 1 l increase in fluid intake) and an increased risk of in-hospital mortality for high fluid intake in subphenotypes 1 (HR: 1.10, 95% CI: 1.03–1.18 per 1 l increase in fluid intake) and 2 (HR: 1.19, 95% CI: 1.08–1.32 per 1 l increase in fluid intake).ConclusionFour subphenotypes of TP in critically ill patients with different clinical characteristics and outcomes and differential responses to therapeutic interventions were identified using routine clinical data. These findings can help improve the identification of different subphenotypes in patients with TP for better individualized treatment of patients in the ICU. |
first_indexed | 2024-04-09T15:44:27Z |
format | Article |
id | doaj.art-aaa6f96728ab41d2bf2339f90ffe543d |
institution | Directory Open Access Journal |
issn | 2296-858X |
language | English |
last_indexed | 2024-04-09T15:44:27Z |
publishDate | 2023-04-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Medicine |
spelling | doaj.art-aaa6f96728ab41d2bf2339f90ffe543d2023-04-27T05:17:46ZengFrontiers Media S.A.Frontiers in Medicine2296-858X2023-04-011010.3389/fmed.2023.11668961166896Identification of subphenotypes in critically ill thrombocytopenic patients with different responses to therapeutic interventions: a retrospective studyXuandong JiangWeimin ZhangYuting PanXuping ChengIntroductionThe causes of thrombocytopenia (TP) in critically ill patients are numerous and heterogeneous. Currently, subphenotype identification is a popular approach to address this problem. Therefore, this study aimed to identify subphenotypes that respond differently to therapeutic interventions in patients with TP using routine clinical data and to improve individualized management of TP.MethodsThis retrospective study included patients with TP admitted to the intensive care unit (ICU) of Dongyang People’s Hospital during 2010–2020. Subphenotypes were identified using latent profile analysis of 15 clinical variables. The Kaplan–Meier method was used to assess the risk of 30-day mortality for different subphenotypes. Multifactorial Cox regression analysis was used to analyze the relationship between therapeutic interventions and in-hospital mortality for different subphenotypes.ResultsThis study included a total of 1,666 participants. Four subphenotypes were identified by latent profile analysis, with subphenotype 1 being the most abundant and having a low mortality rate. Subphenotype 2 was characterized by respiratory dysfunction, subphenotype 3 by renal insufficiency, and subphenotype 4 by shock-like features. Kaplan–Meier analysis revealed that the four subphenotypes had different in-30-day mortality rates. The multivariate Cox regression analysis indicated a significant interaction between platelet transfusion and subphenotype, with more platelet transfusion associated with a decreased risk of in-hospital mortality in subphenotype 3 [hazard ratio (HR): 0.66, 95% confidence interval (CI): 0.46–0.94]. In addition, there was a significant interaction between fluid intake and subphenotype, with a higher fluid intake being associated with a decreased risk of in-hospital mortality for subphenotype 3 (HR: 0.94, 95% CI: 0.89–0.99 per 1 l increase in fluid intake) and an increased risk of in-hospital mortality for high fluid intake in subphenotypes 1 (HR: 1.10, 95% CI: 1.03–1.18 per 1 l increase in fluid intake) and 2 (HR: 1.19, 95% CI: 1.08–1.32 per 1 l increase in fluid intake).ConclusionFour subphenotypes of TP in critically ill patients with different clinical characteristics and outcomes and differential responses to therapeutic interventions were identified using routine clinical data. These findings can help improve the identification of different subphenotypes in patients with TP for better individualized treatment of patients in the ICU.https://www.frontiersin.org/articles/10.3389/fmed.2023.1166896/fullthrombocytopeniasubphenotypesfluid resuscitationartificial intelligencelatent profile analysiscritically ill |
spellingShingle | Xuandong Jiang Weimin Zhang Yuting Pan Xuping Cheng Identification of subphenotypes in critically ill thrombocytopenic patients with different responses to therapeutic interventions: a retrospective study Frontiers in Medicine thrombocytopenia subphenotypes fluid resuscitation artificial intelligence latent profile analysis critically ill |
title | Identification of subphenotypes in critically ill thrombocytopenic patients with different responses to therapeutic interventions: a retrospective study |
title_full | Identification of subphenotypes in critically ill thrombocytopenic patients with different responses to therapeutic interventions: a retrospective study |
title_fullStr | Identification of subphenotypes in critically ill thrombocytopenic patients with different responses to therapeutic interventions: a retrospective study |
title_full_unstemmed | Identification of subphenotypes in critically ill thrombocytopenic patients with different responses to therapeutic interventions: a retrospective study |
title_short | Identification of subphenotypes in critically ill thrombocytopenic patients with different responses to therapeutic interventions: a retrospective study |
title_sort | identification of subphenotypes in critically ill thrombocytopenic patients with different responses to therapeutic interventions a retrospective study |
topic | thrombocytopenia subphenotypes fluid resuscitation artificial intelligence latent profile analysis critically ill |
url | https://www.frontiersin.org/articles/10.3389/fmed.2023.1166896/full |
work_keys_str_mv | AT xuandongjiang identificationofsubphenotypesincriticallyillthrombocytopenicpatientswithdifferentresponsestotherapeuticinterventionsaretrospectivestudy AT weiminzhang identificationofsubphenotypesincriticallyillthrombocytopenicpatientswithdifferentresponsestotherapeuticinterventionsaretrospectivestudy AT yutingpan identificationofsubphenotypesincriticallyillthrombocytopenicpatientswithdifferentresponsestotherapeuticinterventionsaretrospectivestudy AT xupingcheng identificationofsubphenotypesincriticallyillthrombocytopenicpatientswithdifferentresponsestotherapeuticinterventionsaretrospectivestudy |