Tempered Hermite process

A tempered Hermite process modifies the power law kernel in the time domain representation of a Hermite process by multiplying an exponential tempering factor $\lambda >0$ such that the process is well defined for Hurst parameter $H>\frac{1}{2}$. A tempered Hermite process is the weak converge...

Full description

Bibliographic Details
Main Author: Farzad Sabzikar
Format: Article
Language:English
Published: VTeX 2015-09-01
Series:Modern Stochastics: Theory and Applications
Subjects:
Online Access:https://vmsta.vtex.vmt/doi/10.15559/15-VMSTA34
_version_ 1818193624890867712
author Farzad Sabzikar
author_facet Farzad Sabzikar
author_sort Farzad Sabzikar
collection DOAJ
description A tempered Hermite process modifies the power law kernel in the time domain representation of a Hermite process by multiplying an exponential tempering factor $\lambda >0$ such that the process is well defined for Hurst parameter $H>\frac{1}{2}$. A tempered Hermite process is the weak convergence limit of a certain discrete chaos process.
first_indexed 2024-12-12T00:49:22Z
format Article
id doaj.art-aaa9918ce89e40ada45d05700915a963
institution Directory Open Access Journal
issn 2351-6046
2351-6054
language English
last_indexed 2024-12-12T00:49:22Z
publishDate 2015-09-01
publisher VTeX
record_format Article
series Modern Stochastics: Theory and Applications
spelling doaj.art-aaa9918ce89e40ada45d05700915a9632022-12-22T00:44:03ZengVTeXModern Stochastics: Theory and Applications2351-60462351-60542015-09-012432734110.15559/15-VMSTA34Tempered Hermite processFarzad Sabzikar0Department of Statistics, Iowa State University, Ames, IA 50010, USAA tempered Hermite process modifies the power law kernel in the time domain representation of a Hermite process by multiplying an exponential tempering factor $\lambda >0$ such that the process is well defined for Hurst parameter $H>\frac{1}{2}$. A tempered Hermite process is the weak convergence limit of a certain discrete chaos process.https://vmsta.vtex.vmt/doi/10.15559/15-VMSTA34Discrete chaoslimit theoremWiener–Itô integralFourier transform
spellingShingle Farzad Sabzikar
Tempered Hermite process
Modern Stochastics: Theory and Applications
Discrete chaos
limit theorem
Wiener–Itô integral
Fourier transform
title Tempered Hermite process
title_full Tempered Hermite process
title_fullStr Tempered Hermite process
title_full_unstemmed Tempered Hermite process
title_short Tempered Hermite process
title_sort tempered hermite process
topic Discrete chaos
limit theorem
Wiener–Itô integral
Fourier transform
url https://vmsta.vtex.vmt/doi/10.15559/15-VMSTA34
work_keys_str_mv AT farzadsabzikar temperedhermiteprocess