Redox regulation of RyR-mediated Ca2+ release in muscle and neurons

Changes in the redox state of the intracellular ryanodine receptor/Ca2+ release channels of skeletal and cardiac muscle or brain cortex neurons affect their activity. In particular, agents that oxidize or alkylate free SH residues of the channel protein strongly enhance Ca2+-induced Ca2+ release, wh...

Full description

Bibliographic Details
Main Authors: CECILIA HIDALGO, RICARDO BULL, M. ISABEL BEHRENS, PAULINA DONOSO
Format: Article
Language:English
Published: BMC 2004-01-01
Series:Biological Research
Subjects:
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602004000400007
Description
Summary:Changes in the redox state of the intracellular ryanodine receptor/Ca2+ release channels of skeletal and cardiac muscle or brain cortex neurons affect their activity. In particular, agents that oxidize or alkylate free SH residues of the channel protein strongly enhance Ca2+-induced Ca2+ release, whereas reducing agents have the opposite effects. We will discuss here how modifications of highly reactive cysteine residues by endogenous redox agents or cellular redox state influence RyR channel activation by Ca2+ and ATP or inhibition by Mg2+. Possible physiological and pathological implications of these results on cellular Ca2+ signaling will be addressed as well.
ISSN:0716-9760
0717-6287