Geometric Deep Learning sub-network extraction for Maximum Clique Enumeration.

The paper presents an algorithm to approach the problem of Maximum Clique Enumeration, a well known NP-hard problem that have several real world applications. The proposed solution, called LGP-MCE, exploits Geometric Deep Learning, a Machine Learning technique on graphs, to filter out nodes that do...

Full description

Bibliographic Details
Main Authors: Vincenza Carchiolo, Marco Grassia, Michele Malgeri, Giuseppe Mangioni
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0296185&type=printable
Description
Summary:The paper presents an algorithm to approach the problem of Maximum Clique Enumeration, a well known NP-hard problem that have several real world applications. The proposed solution, called LGP-MCE, exploits Geometric Deep Learning, a Machine Learning technique on graphs, to filter out nodes that do not belong to maximum cliques and then applies an exact algorithm to the pruned network. To assess the LGP-MCE, we conducted multiple experiments using a substantial dataset of real-world networks, varying in size, density, and other characteristics. We show that LGP-MCE is able to drastically reduce the running time, while retaining all the maximum cliques.
ISSN:1932-6203