Earthquake resistance analysis of structural systems of multi-storey civil buildings

Relevance. Increasing the density of urban population requires the use of optimal structural systems of multi-storey civil buildings, however, despite a large number of studies on the rationality of their application, the question of choosing an assessment of seismic resistance of structural systems...

Full description

Bibliographic Details
Main Authors: Zaurbek K. Abaev, Marat Yu. Kodzaev, Aleksandr A. Bigulaev
Format: Article
Language:English
Published: Peoples’ Friendship University of Russia (RUDN University) 2020-12-01
Series:Structural Mechanics of Engineering Constructions and Buildings
Subjects:
Online Access:http://journals.rudn.ru/structural-mechanics/article/viewFile/23012/17869
Description
Summary:Relevance. Increasing the density of urban population requires the use of optimal structural systems of multi-storey civil buildings, however, despite a large number of studies on the rationality of their application, the question of choosing an assessment of seismic resistance of structural systems of multi-storey civil buildings is still open. The aim of the study. This study aims to determine advantages and disadvantages of structural systems of multi-storey buildings in seismic areas. Methods. The results of comparison analysis of five structural systems (columns grid - 6×6 m, storey height - 3 m, number of storeys - 20) are presented in this article. The structural systems are: frame & tube, frame & core, core & walls, framed core & walls, framed core & tube. The calculation were done according to Building Code 14.13330.2018 for an earthquake of 8 points intensity of MSK-64 intensity scale. The SCAD Office software package was used for modeling and analyzing. The sum of the effective modal masses taken in the calculation was at least 90% of the total mass of the system excited in the direction of the seismic action for horizontal impacts and at least 75% - for vertical impacts. Results. The comparison was carried out according to the following criteria: maximum displacements, maximum compressive and tensile stresses, maximum periods of natural oscillations, maximum accelerations.
ISSN:1815-5235
2587-8700