Spectral Properties of Exact Polarobreathers in Semiclassical Systems

In this paper, we study the spectral properties of polarobreathers, that is, breathers carrying charge in a one-dimensional semiclassical model. We adapt recently developed numerical methods that preserve the charge probability at every step of time integration without using the Born–Oppenheimer app...

Full description

Bibliographic Details
Main Authors: Juan F. R. Archilla, Jānis Bajārs
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/5/437
Description
Summary:In this paper, we study the spectral properties of polarobreathers, that is, breathers carrying charge in a one-dimensional semiclassical model. We adapt recently developed numerical methods that preserve the charge probability at every step of time integration without using the Born–Oppenheimer approximation, which is the assumption that the electron is not at equilibrium with the atoms or ions. We develop an algorithm to obtain exact polarobreather solutions. The properties of polarobreathers, both stationary and moving ones, are deduced from the lattice and charge variable spectra in the frequency–momentum space. We consider an efficient approach to produce approximate polarobreathers with long lifespans. Their spectrum allows for the determination of the initial conditions and the necessary parameters to obtain numerically exact polarobreathers. The spectra of exact polarobreathers become extremely simple and easy to interpret. We also solve the problem that the charge frequency is not an observable, but the frequency of the charge probability certainly is an observable.
ISSN:2075-1680