Comparative Computational and Experimental Detection of Adenosine Using Ultrasensitive Surface-Enhanced Raman Spectroscopy
To better understand detection and monitoring of the important neurotransmitter adenosine at physiological levels, this study combines quantum chemical density functional modeling and ultrasensitive surface-enhanced Raman spectroscopic (SERS) measurements. Combined simulation results and experimenta...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-08-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/18/8/2696 |
_version_ | 1811279062452142080 |
---|---|
author | Emma M. Sundin John D. Ciubuc Kevin E. Bennet Katia Ochoa Felicia S. Manciu |
author_facet | Emma M. Sundin John D. Ciubuc Kevin E. Bennet Katia Ochoa Felicia S. Manciu |
author_sort | Emma M. Sundin |
collection | DOAJ |
description | To better understand detection and monitoring of the important neurotransmitter adenosine at physiological levels, this study combines quantum chemical density functional modeling and ultrasensitive surface-enhanced Raman spectroscopic (SERS) measurements. Combined simulation results and experimental data for an analyte concentration of about 10−11 molar indicate the presence of all known molecular forms resulting from adenosine’s complex redox-reaction. Detailed analysis presented here, besides assessing potential Raman signatures of these adenosinic forms, also sheds light on the analytic redox process and voltammetric detection. Examples of adenosine Raman fingerprints for different molecular orientations with respect to the SERS substrate are the vibrational line around 920 ± 10 cm−1 for analyte physisorption through the carbinol moiety and around 1600 ± 20 cm−1 for its fully oxidized form. However, both hydroxyl/oxygen sites and NH2/nitrogen sites contribute to molecule’s interaction with the SERS environment. Our results also reveal that contributions of partially oxidized adenosine forms and of the standard form are more likely to be detected with the first recorded voltammetric oxidation peak. The fully oxidized adenosine form contributes mostly to the second peak. Thus, this comparative theoretical–experimental investigation of adenosine’s vibrational signatures provides significant insights for advancing its detection, and for future development of opto-voltammetric biosensors. |
first_indexed | 2024-04-13T00:46:54Z |
format | Article |
id | doaj.art-aade915977284e17a3c4c6b781661dae |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-04-13T00:46:54Z |
publishDate | 2018-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-aade915977284e17a3c4c6b781661dae2022-12-22T03:09:58ZengMDPI AGSensors1424-82202018-08-01188269610.3390/s18082696s18082696Comparative Computational and Experimental Detection of Adenosine Using Ultrasensitive Surface-Enhanced Raman SpectroscopyEmma M. Sundin0John D. Ciubuc1Kevin E. Bennet2Katia Ochoa3Felicia S. Manciu4Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USADepartment of Physics, University of Texas at El Paso, El Paso, TX 79968, USADivision of Engineering, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USADepartment of Physics, University of Texas at El Paso, El Paso, TX 79968, USADepartment of Physics, University of Texas at El Paso, El Paso, TX 79968, USATo better understand detection and monitoring of the important neurotransmitter adenosine at physiological levels, this study combines quantum chemical density functional modeling and ultrasensitive surface-enhanced Raman spectroscopic (SERS) measurements. Combined simulation results and experimental data for an analyte concentration of about 10−11 molar indicate the presence of all known molecular forms resulting from adenosine’s complex redox-reaction. Detailed analysis presented here, besides assessing potential Raman signatures of these adenosinic forms, also sheds light on the analytic redox process and voltammetric detection. Examples of adenosine Raman fingerprints for different molecular orientations with respect to the SERS substrate are the vibrational line around 920 ± 10 cm−1 for analyte physisorption through the carbinol moiety and around 1600 ± 20 cm−1 for its fully oxidized form. However, both hydroxyl/oxygen sites and NH2/nitrogen sites contribute to molecule’s interaction with the SERS environment. Our results also reveal that contributions of partially oxidized adenosine forms and of the standard form are more likely to be detected with the first recorded voltammetric oxidation peak. The fully oxidized adenosine form contributes mostly to the second peak. Thus, this comparative theoretical–experimental investigation of adenosine’s vibrational signatures provides significant insights for advancing its detection, and for future development of opto-voltammetric biosensors.http://www.mdpi.com/1424-8220/18/8/2696surface-enhanced Raman spectroscopytheoretical calculationsadenosine detectionsilver nanocolloidslabel-free optical biosensors |
spellingShingle | Emma M. Sundin John D. Ciubuc Kevin E. Bennet Katia Ochoa Felicia S. Manciu Comparative Computational and Experimental Detection of Adenosine Using Ultrasensitive Surface-Enhanced Raman Spectroscopy Sensors surface-enhanced Raman spectroscopy theoretical calculations adenosine detection silver nanocolloids label-free optical biosensors |
title | Comparative Computational and Experimental Detection of Adenosine Using Ultrasensitive Surface-Enhanced Raman Spectroscopy |
title_full | Comparative Computational and Experimental Detection of Adenosine Using Ultrasensitive Surface-Enhanced Raman Spectroscopy |
title_fullStr | Comparative Computational and Experimental Detection of Adenosine Using Ultrasensitive Surface-Enhanced Raman Spectroscopy |
title_full_unstemmed | Comparative Computational and Experimental Detection of Adenosine Using Ultrasensitive Surface-Enhanced Raman Spectroscopy |
title_short | Comparative Computational and Experimental Detection of Adenosine Using Ultrasensitive Surface-Enhanced Raman Spectroscopy |
title_sort | comparative computational and experimental detection of adenosine using ultrasensitive surface enhanced raman spectroscopy |
topic | surface-enhanced Raman spectroscopy theoretical calculations adenosine detection silver nanocolloids label-free optical biosensors |
url | http://www.mdpi.com/1424-8220/18/8/2696 |
work_keys_str_mv | AT emmamsundin comparativecomputationalandexperimentaldetectionofadenosineusingultrasensitivesurfaceenhancedramanspectroscopy AT johndciubuc comparativecomputationalandexperimentaldetectionofadenosineusingultrasensitivesurfaceenhancedramanspectroscopy AT kevinebennet comparativecomputationalandexperimentaldetectionofadenosineusingultrasensitivesurfaceenhancedramanspectroscopy AT katiaochoa comparativecomputationalandexperimentaldetectionofadenosineusingultrasensitivesurfaceenhancedramanspectroscopy AT feliciasmanciu comparativecomputationalandexperimentaldetectionofadenosineusingultrasensitivesurfaceenhancedramanspectroscopy |