Improving the Modified Universal Soil Loss Equation by Physical Interpretation of Its Factors

A primary objective of this paper is to change the input data requirement of the Modified Universal Soil Loss Equation (MUSLE) for the calculation of its runoff factor for possible application in data-scarce areas. Basically, the MUSLE was developed for a small agricultural watershed, where the exte...

Full description

Bibliographic Details
Main Authors: Manaye Getu Tsige, Andreas Malcherek, Yilma Seleshi
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/14/9/1450
Description
Summary:A primary objective of this paper is to change the input data requirement of the Modified Universal Soil Loss Equation (MUSLE) for the calculation of its runoff factor for possible application in data-scarce areas. Basically, the MUSLE was developed for a small agricultural watershed, where the extent of erosion is from sheet to rill erosion, but we cannot exactly tell whether it considers gully erosion or not. The underlying physical assumption to improve the MUSLE is that the amount of potential energy of runoff is proportional to the shear stress for sediment transport from a slope field and the kinetic energy of the runoff at the bottom of the slope field for gully formation. The improved MUSLE was tested at four watersheds in Ethiopia, and it showed better performance (i.e., the minimum performance is 84%) over the original MUSLE (i.e., the minimum performance was 80%), for all four watersheds under our consideration. We expect the same to be true for other watersheds of Ethiopia.
ISSN:2073-4441