L-minimal canal surfaces

By the method of moving frames we provide an explicit, elementary description of the enveloping surfaces of a 1-parameter family of oriented spheres that are extremals of the variational problem defined on immersed surfaces in Euclidean space by the functional (f,S) → , (H2 − K)K−1dA (L-minimal cana...

Full description

Bibliographic Details
Main Authors: E. MUSSO, L. NICOLODI
Format: Article
Language:English
Published: Sapienza Università Editrice 1995-06-01
Series:Rendiconti di Matematica e delle Sue Applicazioni
Subjects:
Online Access:https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1995(3)/421-445.pdf
_version_ 1797817172611825664
author E. MUSSO
L. NICOLODI
author_facet E. MUSSO
L. NICOLODI
author_sort E. MUSSO
collection DOAJ
description By the method of moving frames we provide an explicit, elementary description of the enveloping surfaces of a 1-parameter family of oriented spheres that are extremals of the variational problem defined on immersed surfaces in Euclidean space by the functional (f,S) → , (H2 − K)K−1dA (L-minimal canal surfaces).
first_indexed 2024-03-13T08:50:25Z
format Article
id doaj.art-aaea178beacb4aa5896a2812c1946aa5
institution Directory Open Access Journal
issn 1120-7183
2532-3350
language English
last_indexed 2024-03-13T08:50:25Z
publishDate 1995-06-01
publisher Sapienza Università Editrice
record_format Article
series Rendiconti di Matematica e delle Sue Applicazioni
spelling doaj.art-aaea178beacb4aa5896a2812c1946aa52023-05-29T16:04:54ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33501995-06-01153421445L-minimal canal surfacesE. MUSSO0L. NICOLODI1Dipartimento di Matematica Pura ed Applicata, Università di L’Aquila – via Vetoio, 67010 Coppito (L’ Aquila) – ItaliaDipartimento di Matematica “G. Castelnuovo” – Università di Roma “La Sapienza” – p.le A. Moro 2 – 00185 Roma – ItaliaBy the method of moving frames we provide an explicit, elementary description of the enveloping surfaces of a 1-parameter family of oriented spheres that are extremals of the variational problem defined on immersed surfaces in Euclidean space by the functional (f,S) → , (H2 − K)K−1dA (L-minimal canal surfaces). https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1995(3)/421-445.pdflaguerre geometrylegendre surfacesl-minimal canal surfaces
spellingShingle E. MUSSO
L. NICOLODI
L-minimal canal surfaces
Rendiconti di Matematica e delle Sue Applicazioni
laguerre geometry
legendre surfaces
l-minimal canal surfaces
title L-minimal canal surfaces
title_full L-minimal canal surfaces
title_fullStr L-minimal canal surfaces
title_full_unstemmed L-minimal canal surfaces
title_short L-minimal canal surfaces
title_sort l minimal canal surfaces
topic laguerre geometry
legendre surfaces
l-minimal canal surfaces
url https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1995(3)/421-445.pdf
work_keys_str_mv AT emusso lminimalcanalsurfaces
AT lnicolodi lminimalcanalsurfaces