In Situ Plasma‐Grown Silicon‐Oxide for Polysilicon Passivating Contacts

Abstract Large‐scale manufacturing of polysilicon‐based passivating contacts for high‐efficiency crystalline silicon (c‐Si) solar cells demands simple fabrication of thermally stable SiOx films with well controlled microstructure and nanoscale thickness to enable quantum‐mechanical tunneling. Here,...

Full description

Bibliographic Details
Main Authors: Areej Alzahrani, Thomas G. Allen, Michele De Bastiani, Emmanuel Van Kerschaver, George T. Harrison, Wenzhu Liu, Stefaan De Wolf
Format: Article
Language:English
Published: Wiley-VCH 2020-11-01
Series:Advanced Materials Interfaces
Subjects:
Online Access:https://doi.org/10.1002/admi.202000589
_version_ 1797730895251111936
author Areej Alzahrani
Thomas G. Allen
Michele De Bastiani
Emmanuel Van Kerschaver
George T. Harrison
Wenzhu Liu
Stefaan De Wolf
author_facet Areej Alzahrani
Thomas G. Allen
Michele De Bastiani
Emmanuel Van Kerschaver
George T. Harrison
Wenzhu Liu
Stefaan De Wolf
author_sort Areej Alzahrani
collection DOAJ
description Abstract Large‐scale manufacturing of polysilicon‐based passivating contacts for high‐efficiency crystalline silicon (c‐Si) solar cells demands simple fabrication of thermally stable SiOx films with well controlled microstructure and nanoscale thickness to enable quantum‐mechanical tunneling. Here, plasma‐dissociated CO2 is investigated to grow in situ thin (<2 nm) SiOx films on c‐Si wafers as tunnel‐oxides for plasma‐deposited, hole‐collecting (i.e., p‐type) polysilicon contacts. It is found that such plasma processing offers excellent thickness control and superior structural integrity upon thermal annealing at 1000 °C, compared to state‐of‐the‐art wet‐chemical oxides. As a result, p‐type polysilicon contacts are achieved on n‐type c‐Si wafers that combine excellent surface passivation, resulting in an implied open‐circuit voltage exceeding 700 mV, with a contact resistance as low as 0.02 Ω cm2.
first_indexed 2024-03-12T11:50:49Z
format Article
id doaj.art-aaecf5f79e944154a0fdea09c24f5be6
institution Directory Open Access Journal
issn 2196-7350
language English
last_indexed 2024-03-12T11:50:49Z
publishDate 2020-11-01
publisher Wiley-VCH
record_format Article
series Advanced Materials Interfaces
spelling doaj.art-aaecf5f79e944154a0fdea09c24f5be62023-08-31T08:56:02ZengWiley-VCHAdvanced Materials Interfaces2196-73502020-11-01721n/an/a10.1002/admi.202000589In Situ Plasma‐Grown Silicon‐Oxide for Polysilicon Passivating ContactsAreej Alzahrani0Thomas G. Allen1Michele De Bastiani2Emmanuel Van Kerschaver3George T. Harrison4Wenzhu Liu5Stefaan De Wolf6KAUST Solar Center (KSC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi ArabiaKAUST Solar Center (KSC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi ArabiaKAUST Solar Center (KSC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi ArabiaKAUST Solar Center (KSC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi ArabiaKAUST Solar Center (KSC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi ArabiaKAUST Solar Center (KSC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi ArabiaKAUST Solar Center (KSC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi ArabiaAbstract Large‐scale manufacturing of polysilicon‐based passivating contacts for high‐efficiency crystalline silicon (c‐Si) solar cells demands simple fabrication of thermally stable SiOx films with well controlled microstructure and nanoscale thickness to enable quantum‐mechanical tunneling. Here, plasma‐dissociated CO2 is investigated to grow in situ thin (<2 nm) SiOx films on c‐Si wafers as tunnel‐oxides for plasma‐deposited, hole‐collecting (i.e., p‐type) polysilicon contacts. It is found that such plasma processing offers excellent thickness control and superior structural integrity upon thermal annealing at 1000 °C, compared to state‐of‐the‐art wet‐chemical oxides. As a result, p‐type polysilicon contacts are achieved on n‐type c‐Si wafers that combine excellent surface passivation, resulting in an implied open‐circuit voltage exceeding 700 mV, with a contact resistance as low as 0.02 Ω cm2.https://doi.org/10.1002/admi.202000589polysilicon passivating contactssiliconsolar cells
spellingShingle Areej Alzahrani
Thomas G. Allen
Michele De Bastiani
Emmanuel Van Kerschaver
George T. Harrison
Wenzhu Liu
Stefaan De Wolf
In Situ Plasma‐Grown Silicon‐Oxide for Polysilicon Passivating Contacts
Advanced Materials Interfaces
polysilicon passivating contacts
silicon
solar cells
title In Situ Plasma‐Grown Silicon‐Oxide for Polysilicon Passivating Contacts
title_full In Situ Plasma‐Grown Silicon‐Oxide for Polysilicon Passivating Contacts
title_fullStr In Situ Plasma‐Grown Silicon‐Oxide for Polysilicon Passivating Contacts
title_full_unstemmed In Situ Plasma‐Grown Silicon‐Oxide for Polysilicon Passivating Contacts
title_short In Situ Plasma‐Grown Silicon‐Oxide for Polysilicon Passivating Contacts
title_sort in situ plasma grown silicon oxide for polysilicon passivating contacts
topic polysilicon passivating contacts
silicon
solar cells
url https://doi.org/10.1002/admi.202000589
work_keys_str_mv AT areejalzahrani insituplasmagrownsiliconoxideforpolysiliconpassivatingcontacts
AT thomasgallen insituplasmagrownsiliconoxideforpolysiliconpassivatingcontacts
AT micheledebastiani insituplasmagrownsiliconoxideforpolysiliconpassivatingcontacts
AT emmanuelvankerschaver insituplasmagrownsiliconoxideforpolysiliconpassivatingcontacts
AT georgetharrison insituplasmagrownsiliconoxideforpolysiliconpassivatingcontacts
AT wenzhuliu insituplasmagrownsiliconoxideforpolysiliconpassivatingcontacts
AT stefaandewolf insituplasmagrownsiliconoxideforpolysiliconpassivatingcontacts