Accurate Evaluation of Feature Contributions for Sentinel Lymph Node Status Classification in Breast Cancer

The current guidelines recommend the sentinel lymph node biopsy to evaluate the lymph node involvement for breast cancer patients with clinically negative lymph nodes on clinical or radiological examination. Machine learning (ML) models have significantly improved the prediction of lymph nodes statu...

Full description

Bibliographic Details
Main Authors: Angela Lombardi, Nicola Amoroso, Loredana Bellantuono, Samantha Bove, Maria Colomba Comes, Annarita Fanizzi, Daniele La Forgia, Vito Lorusso, Alfonso Monaco, Sabina Tangaro, Francesco Alfredo Zito, Roberto Bellotti, Raffaella Massafra
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/14/7227
_version_ 1797407587602268160
author Angela Lombardi
Nicola Amoroso
Loredana Bellantuono
Samantha Bove
Maria Colomba Comes
Annarita Fanizzi
Daniele La Forgia
Vito Lorusso
Alfonso Monaco
Sabina Tangaro
Francesco Alfredo Zito
Roberto Bellotti
Raffaella Massafra
author_facet Angela Lombardi
Nicola Amoroso
Loredana Bellantuono
Samantha Bove
Maria Colomba Comes
Annarita Fanizzi
Daniele La Forgia
Vito Lorusso
Alfonso Monaco
Sabina Tangaro
Francesco Alfredo Zito
Roberto Bellotti
Raffaella Massafra
author_sort Angela Lombardi
collection DOAJ
description The current guidelines recommend the sentinel lymph node biopsy to evaluate the lymph node involvement for breast cancer patients with clinically negative lymph nodes on clinical or radiological examination. Machine learning (ML) models have significantly improved the prediction of lymph nodes status based on clinical features, thus avoiding expensive, time-consuming and invasive procedures. However, the classification of sentinel lymph node status represents a typical example of an unbalanced classification problem. In this work, we developed a ML framework to explore the effects of unbalanced populations on the performance and stability of feature ranking for sentinel lymph node status classification in breast cancer. Our results indicate state-of-the-art AUC (Area under the Receiver Operating Characteristic curve) values on a hold-out set (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>67</mn><mo>%</mo></mrow></semantics></math></inline-formula>) while providing particularly stable features related to tumor size, histological subtype and estrogen receptor expression, which should therefore be considered as potential biomarkers.
first_indexed 2024-03-09T03:43:42Z
format Article
id doaj.art-aaf36b281ca24345804fe579e8cb3e10
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-09T03:43:42Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-aaf36b281ca24345804fe579e8cb3e102023-12-03T14:37:13ZengMDPI AGApplied Sciences2076-34172022-07-011214722710.3390/app12147227Accurate Evaluation of Feature Contributions for Sentinel Lymph Node Status Classification in Breast CancerAngela Lombardi0Nicola Amoroso1Loredana Bellantuono2Samantha Bove3Maria Colomba Comes4Annarita Fanizzi5Daniele La Forgia6Vito Lorusso7Alfonso Monaco8Sabina Tangaro9Francesco Alfredo Zito10Roberto Bellotti11Raffaella Massafra12Dipartimento Interateneo di Fisica, Università degli Studi di Bari, Via E. Orabona 4, 70125 Bari, ItalyIstituto Nazionale di Fisica Nucleare, Sezione di Bari, Via E. Orabona 4, 70125 Bari, ItalyIstituto Nazionale di Fisica Nucleare, Sezione di Bari, Via E. Orabona 4, 70125 Bari, ItalyI.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, ItalyI.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, ItalyI.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, ItalyI.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, ItalyI.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, ItalyDipartimento Interateneo di Fisica, Università degli Studi di Bari, Via E. Orabona 4, 70125 Bari, ItalyIstituto Nazionale di Fisica Nucleare, Sezione di Bari, Via E. Orabona 4, 70125 Bari, ItalyI.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, ItalyDipartimento Interateneo di Fisica, Università degli Studi di Bari, Via E. Orabona 4, 70125 Bari, ItalyI.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, ItalyThe current guidelines recommend the sentinel lymph node biopsy to evaluate the lymph node involvement for breast cancer patients with clinically negative lymph nodes on clinical or radiological examination. Machine learning (ML) models have significantly improved the prediction of lymph nodes status based on clinical features, thus avoiding expensive, time-consuming and invasive procedures. However, the classification of sentinel lymph node status represents a typical example of an unbalanced classification problem. In this work, we developed a ML framework to explore the effects of unbalanced populations on the performance and stability of feature ranking for sentinel lymph node status classification in breast cancer. Our results indicate state-of-the-art AUC (Area under the Receiver Operating Characteristic curve) values on a hold-out set (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>67</mn><mo>%</mo></mrow></semantics></math></inline-formula>) while providing particularly stable features related to tumor size, histological subtype and estrogen receptor expression, which should therefore be considered as potential biomarkers.https://www.mdpi.com/2076-3417/12/14/7227sentinel lymph nodeimbalanced datasetdata augmentationbreast cancermachine learninginterpretability
spellingShingle Angela Lombardi
Nicola Amoroso
Loredana Bellantuono
Samantha Bove
Maria Colomba Comes
Annarita Fanizzi
Daniele La Forgia
Vito Lorusso
Alfonso Monaco
Sabina Tangaro
Francesco Alfredo Zito
Roberto Bellotti
Raffaella Massafra
Accurate Evaluation of Feature Contributions for Sentinel Lymph Node Status Classification in Breast Cancer
Applied Sciences
sentinel lymph node
imbalanced dataset
data augmentation
breast cancer
machine learning
interpretability
title Accurate Evaluation of Feature Contributions for Sentinel Lymph Node Status Classification in Breast Cancer
title_full Accurate Evaluation of Feature Contributions for Sentinel Lymph Node Status Classification in Breast Cancer
title_fullStr Accurate Evaluation of Feature Contributions for Sentinel Lymph Node Status Classification in Breast Cancer
title_full_unstemmed Accurate Evaluation of Feature Contributions for Sentinel Lymph Node Status Classification in Breast Cancer
title_short Accurate Evaluation of Feature Contributions for Sentinel Lymph Node Status Classification in Breast Cancer
title_sort accurate evaluation of feature contributions for sentinel lymph node status classification in breast cancer
topic sentinel lymph node
imbalanced dataset
data augmentation
breast cancer
machine learning
interpretability
url https://www.mdpi.com/2076-3417/12/14/7227
work_keys_str_mv AT angelalombardi accurateevaluationoffeaturecontributionsforsentinellymphnodestatusclassificationinbreastcancer
AT nicolaamoroso accurateevaluationoffeaturecontributionsforsentinellymphnodestatusclassificationinbreastcancer
AT loredanabellantuono accurateevaluationoffeaturecontributionsforsentinellymphnodestatusclassificationinbreastcancer
AT samanthabove accurateevaluationoffeaturecontributionsforsentinellymphnodestatusclassificationinbreastcancer
AT mariacolombacomes accurateevaluationoffeaturecontributionsforsentinellymphnodestatusclassificationinbreastcancer
AT annaritafanizzi accurateevaluationoffeaturecontributionsforsentinellymphnodestatusclassificationinbreastcancer
AT danielelaforgia accurateevaluationoffeaturecontributionsforsentinellymphnodestatusclassificationinbreastcancer
AT vitolorusso accurateevaluationoffeaturecontributionsforsentinellymphnodestatusclassificationinbreastcancer
AT alfonsomonaco accurateevaluationoffeaturecontributionsforsentinellymphnodestatusclassificationinbreastcancer
AT sabinatangaro accurateevaluationoffeaturecontributionsforsentinellymphnodestatusclassificationinbreastcancer
AT francescoalfredozito accurateevaluationoffeaturecontributionsforsentinellymphnodestatusclassificationinbreastcancer
AT robertobellotti accurateevaluationoffeaturecontributionsforsentinellymphnodestatusclassificationinbreastcancer
AT raffaellamassafra accurateevaluationoffeaturecontributionsforsentinellymphnodestatusclassificationinbreastcancer