Energy Efficient Direction-Based PDORP Routing Protocol for WSN
Energy consumption is one of the constraints in wireless sensor networks (WSNs). The routing protocols are the hot areas to address quality-of-service (QoS) related issues, viz., energy consumption, network lifetime, network scalability, and packet overhead. The key issue in WSN is that these networ...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2016-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/7484723/ |
_version_ | 1818457921840742400 |
---|---|
author | Gurbinder Singh Brar Shalli Rani Vinay Chopra Rahul Malhotra Houbing Song Syed Hassan Ahmed |
author_facet | Gurbinder Singh Brar Shalli Rani Vinay Chopra Rahul Malhotra Houbing Song Syed Hassan Ahmed |
author_sort | Gurbinder Singh Brar |
collection | DOAJ |
description | Energy consumption is one of the constraints in wireless sensor networks (WSNs). The routing protocols are the hot areas to address quality-of-service (QoS) related issues, viz., energy consumption, network lifetime, network scalability, and packet overhead. The key issue in WSN is that these networks suffer from the packet overhead, which is the root cause of more energy consumption and degrade the QoS in sensor networks. In WSN, there are several routing protocols, which are used to enhance the performance of the network. Out of those protocols, dynamic source routing (DSR) protocol is more suitable in terms of small energy density, but sometimes when the mode of a node changes from active to sleep, the efficiency decreases as the data packets need to wait at the initial point, where the packet has been sent and this increases the waiting time and end-to-end delay of the packets, which leads to increase in energy consumption. Our problem is to identify the dead nodes and to choose another suitable path so that the data transmission becomes smoother and less energy gets conserved. In order to resolve these issues, we propose directional transmission-based energy aware routing protocol named PDORP. The proposed protocol PDORP has the characteristics of both power efficient gathering sensor information system and DSR routing protocols. In addition, hybridization of genetic algorithm and bacterial foraging optimization is applied to proposed routing protocol to identify energy efficient optimal paths. The performance analysis, comparison through a hybridization approach of the proposed routing protocol, gives better result comprising less bit error rate, less delay, less energy consumption, and better throughput, which leads to better QoS and prolong the lifetime of the network. Moreover, the computation model is adopted to evaluate and compare the performance of the both routing protocols using soft computing techniques. |
first_indexed | 2024-12-14T22:50:15Z |
format | Article |
id | doaj.art-aaf5c62a8f824fb4896e9fb9fad63fe3 |
institution | Directory Open Access Journal |
issn | 2169-3536 |
language | English |
last_indexed | 2024-12-14T22:50:15Z |
publishDate | 2016-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Access |
spelling | doaj.art-aaf5c62a8f824fb4896e9fb9fad63fe32022-12-21T22:44:44ZengIEEEIEEE Access2169-35362016-01-0143182319410.1109/ACCESS.2016.25764757484723Energy Efficient Direction-Based PDORP Routing Protocol for WSNGurbinder Singh Brar0Shalli Rani1Vinay Chopra2Rahul Malhotra3Houbing Song4Syed Hassan Ahmed5https://orcid.org/0000-0002-1381-5095Department of Computer Science and Engineering, I. K. Gujral Punjab Technical University, Kapurthala, IndiaDepartment of Computer Applications, I. K. Gujral Punjab Technical University, Kapurthala, IndiaDepartment of Computer Science and Engineering, Dayanand Anglo-Vedic Institute of Engineering and Technology, Jalandhar, IndiaDepartment of Electronics and Communication Engineering, Guru Teg Bahadur Khalsa Institute of Engineering and Technology, Malout, IndiaDepartment of Electrical and Computer Engineering, West Virginia University, Montgomery, WV, USASchool of Computer Science and Engineering, Kyungpook National University, Daegu, South KoreaEnergy consumption is one of the constraints in wireless sensor networks (WSNs). The routing protocols are the hot areas to address quality-of-service (QoS) related issues, viz., energy consumption, network lifetime, network scalability, and packet overhead. The key issue in WSN is that these networks suffer from the packet overhead, which is the root cause of more energy consumption and degrade the QoS in sensor networks. In WSN, there are several routing protocols, which are used to enhance the performance of the network. Out of those protocols, dynamic source routing (DSR) protocol is more suitable in terms of small energy density, but sometimes when the mode of a node changes from active to sleep, the efficiency decreases as the data packets need to wait at the initial point, where the packet has been sent and this increases the waiting time and end-to-end delay of the packets, which leads to increase in energy consumption. Our problem is to identify the dead nodes and to choose another suitable path so that the data transmission becomes smoother and less energy gets conserved. In order to resolve these issues, we propose directional transmission-based energy aware routing protocol named PDORP. The proposed protocol PDORP has the characteristics of both power efficient gathering sensor information system and DSR routing protocols. In addition, hybridization of genetic algorithm and bacterial foraging optimization is applied to proposed routing protocol to identify energy efficient optimal paths. The performance analysis, comparison through a hybridization approach of the proposed routing protocol, gives better result comprising less bit error rate, less delay, less energy consumption, and better throughput, which leads to better QoS and prolong the lifetime of the network. Moreover, the computation model is adopted to evaluate and compare the performance of the both routing protocols using soft computing techniques.https://ieeexplore.ieee.org/document/7484723/Wireless sensor networksDSRPEGASISPDORPOD-PRRPLEACH |
spellingShingle | Gurbinder Singh Brar Shalli Rani Vinay Chopra Rahul Malhotra Houbing Song Syed Hassan Ahmed Energy Efficient Direction-Based PDORP Routing Protocol for WSN IEEE Access Wireless sensor networks DSR PEGASIS PDORP OD-PRRP LEACH |
title | Energy Efficient Direction-Based PDORP Routing Protocol for WSN |
title_full | Energy Efficient Direction-Based PDORP Routing Protocol for WSN |
title_fullStr | Energy Efficient Direction-Based PDORP Routing Protocol for WSN |
title_full_unstemmed | Energy Efficient Direction-Based PDORP Routing Protocol for WSN |
title_short | Energy Efficient Direction-Based PDORP Routing Protocol for WSN |
title_sort | energy efficient direction based pdorp routing protocol for wsn |
topic | Wireless sensor networks DSR PEGASIS PDORP OD-PRRP LEACH |
url | https://ieeexplore.ieee.org/document/7484723/ |
work_keys_str_mv | AT gurbindersinghbrar energyefficientdirectionbasedpdorproutingprotocolforwsn AT shallirani energyefficientdirectionbasedpdorproutingprotocolforwsn AT vinaychopra energyefficientdirectionbasedpdorproutingprotocolforwsn AT rahulmalhotra energyefficientdirectionbasedpdorproutingprotocolforwsn AT houbingsong energyefficientdirectionbasedpdorproutingprotocolforwsn AT syedhassanahmed energyefficientdirectionbasedpdorproutingprotocolforwsn |