Bacterial outer membrane vesicle-based cancer nanovaccines

Tumor vaccines, a type of personalized tumor immunotherapy, have developed rapidly in recent decades. These vaccines evoke tumor antigen-specific T cells to achieve immune recognition and killing of tumor cells. Because the immunogenicity of tumor antigens alone is insufficient, immune adjuvants and...

Full description

Bibliographic Details
Main Authors: Xiaoyu Gao, Qingqing Feng, Jing Wang, Xiao Zhao
Format: Article
Language:English
Published: China Anti-Cancer Association 2022-09-01
Series:Cancer Biology & Medicine
Subjects:
Online Access:https://www.cancerbiomed.org/content/19/9/1290
Description
Summary:Tumor vaccines, a type of personalized tumor immunotherapy, have developed rapidly in recent decades. These vaccines evoke tumor antigen-specific T cells to achieve immune recognition and killing of tumor cells. Because the immunogenicity of tumor antigens alone is insufficient, immune adjuvants and nanocarriers are often required to enhance anti-tumor immune responses. At present, vaccine carrier development often integrates nanocarriers and immune adjuvants. Among them, outer membrane vesicles (OMVs) are receiving increasing attention as a delivery platform for tumor vaccines. OMVs are natural nanovesicles derived from Gram-negative bacteria, which have adjuvant function because they contain pathogen associated molecular patterns. Importantly, OMVs can be functionally modified by genetic engineering of bacteria, thus laying a foundation for applications as a delivery platform for tumor nanovaccines. This review summarizes 5 aspects of recent progress in, and future development of, OMV-based tumor nanovaccines: strain selection, heterogeneity, tumor antigen loading, immunogenicity and safety, and mass production of OMVs.
ISSN:2095-3941