Wigner function for a particle in an infinite lattice

We study the Wigner function for a quantum system with a discrete, infinite-dimensional Hilbert space, such as a spinless particle moving on a one-dimensional infinite lattice. We discuss the peculiarities of this scenario and of the associated phase-space construction, propose a meaningful definiti...

Full description

Bibliographic Details
Main Authors: M Hinarejos, A Pérez, M C Bañuls
Format: Article
Language:English
Published: IOP Publishing 2012-01-01
Series:New Journal of Physics
Online Access:https://doi.org/10.1088/1367-2630/14/10/103009
Description
Summary:We study the Wigner function for a quantum system with a discrete, infinite-dimensional Hilbert space, such as a spinless particle moving on a one-dimensional infinite lattice. We discuss the peculiarities of this scenario and of the associated phase-space construction, propose a meaningful definition of the Wigner function in this case and characterize the set of pure states for which it is non-negative. We propose a measure of non-classicality for states in this system, which is consistent with the continuum limit. The prescriptions introduced here are illustrated by applying them to localized and Gaussian states and to their superpositions.
ISSN:1367-2630