Analysis of tangential contact boundary value problems using potential functions

This paper presents an analysis technique of high-order contact potential problems and its application to an elastic settlement analysis of a shallow foundation system subjected to a combined traction boundary condition. Closed-form solutions of potential functions are derived for an elastic half-sp...

Full description

Bibliographic Details
Main Authors: Adam G. Taylor, Jae H. Chung
Format: Article
Language:English
Published: The Royal Society 2019-03-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.182106
Description
Summary:This paper presents an analysis technique of high-order contact potential problems and its application to an elastic settlement analysis of a shallow foundation system subjected to a combined traction boundary condition. Closed-form solutions of potential functions are derived for an elastic half-space subjected to bilinear tangential traction boundary conditions over rectangular surface regions. Using the principle of superposition, the present solutions provide a means to form an approximate and continuous solution of elastic contact problems with higher-order tangential boundary conditions. As an application example, an elastic settlement analysis of a rigid footing founded on a dense granular soil is performed under a tangential traction boundary condition prescribed in an analogy with the stress equilibrium states of static sandpiles. A generalized solution approach to combined normal and tangential traction boundary value problems is discussed in the context of foundation engineering.
ISSN:2054-5703