Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores
Orbital tuning is central for ice core chronologies beyond annual layer counting, available back to 60 ka (i.e. thousands of years before 1950) for Greenland ice cores. While several complementary orbital tuning tools have recently been developed using <i>δ</i><sup>18</sup>O&...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2016-03-01
|
Series: | Climate of the Past |
Online Access: | http://www.clim-past.net/12/729/2016/cp-12-729-2016.pdf |
_version_ | 1828918171497660416 |
---|---|
author | L. Bazin A. Landais E. Capron V. Masson-Delmotte C. Ritz G. Picard J. Jouzel M. Dumont M. Leuenberger F. Prié |
author_facet | L. Bazin A. Landais E. Capron V. Masson-Delmotte C. Ritz G. Picard J. Jouzel M. Dumont M. Leuenberger F. Prié |
author_sort | L. Bazin |
collection | DOAJ |
description | Orbital tuning is central for ice core chronologies beyond annual layer
counting, available back to 60 ka (i.e. thousands of years before 1950) for
Greenland ice cores. While several complementary orbital tuning tools have
recently been developed using <i>δ</i><sup>18</sup>O<sub>atm</sub>, <i>δ</i>O<sub>2</sub>⁄N<sub>2</sub> and air content with different
orbital targets, quantifying their uncertainties remains a challenge. Indeed,
the exact processes linking variations of these parameters, measured in the
air trapped in ice, to their orbital targets are not yet fully understood.
Here, we provide new series of <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> and <i>δ</i><sup>18</sup>O<sub>atm</sub> data encompassing Marine
Isotopic Stage (MIS) 5 (between 100 and 160 ka) and the oldest part (340–800 ka) of the East Antarctic EPICA Dome C (EDC) ice core. For the first time,
the measurements over MIS 5 allow an inter-comparison of <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> and <i>δ</i><sup>18</sup>O<sub>atm</sub>
records from three East Antarctic ice core sites (EDC, Vostok and Dome F).
This comparison highlights some site-specific <i>δ</i>O<sub>2</sub>∕N<sub>2</sub>
variations. Such an observation, the evidence of a 100 ka periodicity in the
<i>δ</i>O<sub>2</sub>∕N<sub>2</sub> signal and the difficulty to identify extrema and mid-slopes in <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> increase the uncertainty associated with the use of <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> as
an orbital tuning tool, now calculated to be 3–4 ka. When
combining records of <i>δ</i><sup>18</sup>O<sub>atm</sub> and <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> from Vostok and EDC, we find a loss of
orbital signature for these two parameters during periods of minimum
eccentricity (∼ 400 ka, ∼ 720–800 ka). Our data set reveals a
time-varying offset between <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> and <i>δ</i><sup>18</sup>O<sub>atm</sub> records over the last 800 ka
that we interpret as variations in the lagged response of
<i>δ</i><sup>18</sup>O<sub>atm</sub> to precession. The largest offsets are identified
during Terminations II, MIS 8 and MIS 16, corresponding to periods of
destabilization of the Northern polar ice sheets.
We therefore suggest that the occurrence of Heinrich–like events influences the response of <i>δ</i><sup>18</sup>O<sub>atm</sub> to precession. |
first_indexed | 2024-12-13T21:05:06Z |
format | Article |
id | doaj.art-ab1adfce666b45e9b9d39b0b0efc90bb |
institution | Directory Open Access Journal |
issn | 1814-9324 1814-9332 |
language | English |
last_indexed | 2024-12-13T21:05:06Z |
publishDate | 2016-03-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Climate of the Past |
spelling | doaj.art-ab1adfce666b45e9b9d39b0b0efc90bb2022-12-21T23:31:30ZengCopernicus PublicationsClimate of the Past1814-93241814-93322016-03-0112372974810.5194/cp-12-729-2016Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice coresL. Bazin0A. Landais1E. Capron2V. Masson-Delmotte3C. Ritz4G. Picard5J. Jouzel6M. Dumont7M. Leuenberger8F. Prié9Laboratoire des Sciences du Climat et de l'Environnement, UMR8212, CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, UMR8212, CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, FranceBritish Antarctic Survey, NERC, Cambridge, UKLaboratoire des Sciences du Climat et de l'Environnement, UMR8212, CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, FranceLaboratoire de Glaciologie et Géophysique de l'Environnement, UMR 5183, Univ. Grenoble Alpes–CNRS, Grenoble, FranceLaboratoire de Glaciologie et Géophysique de l'Environnement, UMR 5183, Univ. Grenoble Alpes–CNRS, Grenoble, FranceLaboratoire des Sciences du Climat et de l'Environnement, UMR8212, CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, FranceMétéo–France–CNRS, CNRM–GAME UMR 3589, CEN, Grenoble, FranceClimate and Environmental Physics, Physics Institute and Oeschger Center for Climate Change Research, University of Bern, Bern, SwitzerlandLaboratoire des Sciences du Climat et de l'Environnement, UMR8212, CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, FranceOrbital tuning is central for ice core chronologies beyond annual layer counting, available back to 60 ka (i.e. thousands of years before 1950) for Greenland ice cores. While several complementary orbital tuning tools have recently been developed using <i>δ</i><sup>18</sup>O<sub>atm</sub>, <i>δ</i>O<sub>2</sub>⁄N<sub>2</sub> and air content with different orbital targets, quantifying their uncertainties remains a challenge. Indeed, the exact processes linking variations of these parameters, measured in the air trapped in ice, to their orbital targets are not yet fully understood. Here, we provide new series of <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> and <i>δ</i><sup>18</sup>O<sub>atm</sub> data encompassing Marine Isotopic Stage (MIS) 5 (between 100 and 160 ka) and the oldest part (340–800 ka) of the East Antarctic EPICA Dome C (EDC) ice core. For the first time, the measurements over MIS 5 allow an inter-comparison of <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> and <i>δ</i><sup>18</sup>O<sub>atm</sub> records from three East Antarctic ice core sites (EDC, Vostok and Dome F). This comparison highlights some site-specific <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> variations. Such an observation, the evidence of a 100 ka periodicity in the <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> signal and the difficulty to identify extrema and mid-slopes in <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> increase the uncertainty associated with the use of <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> as an orbital tuning tool, now calculated to be 3–4 ka. When combining records of <i>δ</i><sup>18</sup>O<sub>atm</sub> and <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> from Vostok and EDC, we find a loss of orbital signature for these two parameters during periods of minimum eccentricity (∼ 400 ka, ∼ 720–800 ka). Our data set reveals a time-varying offset between <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> and <i>δ</i><sup>18</sup>O<sub>atm</sub> records over the last 800 ka that we interpret as variations in the lagged response of <i>δ</i><sup>18</sup>O<sub>atm</sub> to precession. The largest offsets are identified during Terminations II, MIS 8 and MIS 16, corresponding to periods of destabilization of the Northern polar ice sheets. We therefore suggest that the occurrence of Heinrich–like events influences the response of <i>δ</i><sup>18</sup>O<sub>atm</sub> to precession.http://www.clim-past.net/12/729/2016/cp-12-729-2016.pdf |
spellingShingle | L. Bazin A. Landais E. Capron V. Masson-Delmotte C. Ritz G. Picard J. Jouzel M. Dumont M. Leuenberger F. Prié Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores Climate of the Past |
title | Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores |
title_full | Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores |
title_fullStr | Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores |
title_full_unstemmed | Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores |
title_short | Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores |
title_sort | phase relationships between orbital forcing and the composition of air trapped in antarctic ice cores |
url | http://www.clim-past.net/12/729/2016/cp-12-729-2016.pdf |
work_keys_str_mv | AT lbazin phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores AT alandais phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores AT ecapron phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores AT vmassondelmotte phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores AT critz phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores AT gpicard phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores AT jjouzel phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores AT mdumont phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores AT mleuenberger phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores AT fprie phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores |