Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores

Orbital tuning is central for ice core chronologies beyond annual layer counting, available back to 60 ka (i.e. thousands of years before 1950) for Greenland ice cores. While several complementary orbital tuning tools have recently been developed using <i>δ</i><sup>18</sup>O&...

Full description

Bibliographic Details
Main Authors: L. Bazin, A. Landais, E. Capron, V. Masson-Delmotte, C. Ritz, G. Picard, J. Jouzel, M. Dumont, M. Leuenberger, F. Prié
Format: Article
Language:English
Published: Copernicus Publications 2016-03-01
Series:Climate of the Past
Online Access:http://www.clim-past.net/12/729/2016/cp-12-729-2016.pdf
_version_ 1828918171497660416
author L. Bazin
A. Landais
E. Capron
V. Masson-Delmotte
C. Ritz
G. Picard
J. Jouzel
M. Dumont
M. Leuenberger
F. Prié
author_facet L. Bazin
A. Landais
E. Capron
V. Masson-Delmotte
C. Ritz
G. Picard
J. Jouzel
M. Dumont
M. Leuenberger
F. Prié
author_sort L. Bazin
collection DOAJ
description Orbital tuning is central for ice core chronologies beyond annual layer counting, available back to 60 ka (i.e. thousands of years before 1950) for Greenland ice cores. While several complementary orbital tuning tools have recently been developed using <i>δ</i><sup>18</sup>O<sub>atm</sub>, <i>δ</i>O<sub>2</sub>&frasl;N<sub>2</sub> and air content with different orbital targets, quantifying their uncertainties remains a challenge. Indeed, the exact processes linking variations of these parameters, measured in the air trapped in ice, to their orbital targets are not yet fully understood. Here, we provide new series of <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> and <i>δ</i><sup>18</sup>O<sub>atm</sub> data encompassing Marine Isotopic Stage (MIS) 5 (between 100 and 160 ka) and the oldest part (340&ndash;800 ka) of the East Antarctic EPICA Dome C (EDC) ice core. For the first time, the measurements over MIS 5 allow an inter-comparison of <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> and <i>δ</i><sup>18</sup>O<sub>atm</sub> records from three East Antarctic ice core sites (EDC, Vostok and Dome F). This comparison highlights some site-specific <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> variations. Such an observation, the evidence of a 100 ka periodicity in the <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> signal and the difficulty to identify extrema and mid-slopes in <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> increase the uncertainty associated with the use of <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> as an orbital tuning tool, now calculated to be 3&ndash;4 ka. When combining records of <i>δ</i><sup>18</sup>O<sub>atm</sub> and <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> from Vostok and EDC, we find a loss of orbital signature for these two parameters during periods of minimum eccentricity (∼ 400 ka, ∼ 720&ndash;800 ka). Our data set reveals a time-varying offset between <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> and <i>δ</i><sup>18</sup>O<sub>atm</sub> records over the last 800 ka that we interpret as variations in the lagged response of <i>δ</i><sup>18</sup>O<sub>atm</sub> to precession. The largest offsets are identified during Terminations II, MIS 8 and MIS 16, corresponding to periods of destabilization of the Northern polar ice sheets. We therefore suggest that the occurrence of Heinrich–like events influences the response of <i>δ</i><sup>18</sup>O<sub>atm</sub> to precession.
first_indexed 2024-12-13T21:05:06Z
format Article
id doaj.art-ab1adfce666b45e9b9d39b0b0efc90bb
institution Directory Open Access Journal
issn 1814-9324
1814-9332
language English
last_indexed 2024-12-13T21:05:06Z
publishDate 2016-03-01
publisher Copernicus Publications
record_format Article
series Climate of the Past
spelling doaj.art-ab1adfce666b45e9b9d39b0b0efc90bb2022-12-21T23:31:30ZengCopernicus PublicationsClimate of the Past1814-93241814-93322016-03-0112372974810.5194/cp-12-729-2016Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice coresL. Bazin0A. Landais1E. Capron2V. Masson-Delmotte3C. Ritz4G. Picard5J. Jouzel6M. Dumont7M. Leuenberger8F. Prié9Laboratoire des Sciences du Climat et de l'Environnement, UMR8212, CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, UMR8212, CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, FranceBritish Antarctic Survey, NERC, Cambridge, UKLaboratoire des Sciences du Climat et de l'Environnement, UMR8212, CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, FranceLaboratoire de Glaciologie et Géophysique de l'Environnement, UMR 5183, Univ. Grenoble Alpes–CNRS, Grenoble, FranceLaboratoire de Glaciologie et Géophysique de l'Environnement, UMR 5183, Univ. Grenoble Alpes–CNRS, Grenoble, FranceLaboratoire des Sciences du Climat et de l'Environnement, UMR8212, CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, FranceMétéo–France–CNRS, CNRM–GAME UMR 3589, CEN, Grenoble, FranceClimate and Environmental Physics, Physics Institute and Oeschger Center for Climate Change Research, University of Bern, Bern, SwitzerlandLaboratoire des Sciences du Climat et de l'Environnement, UMR8212, CEA–CNRS–UVSQ, Orme des Merisiers, Gif sur Yvette, FranceOrbital tuning is central for ice core chronologies beyond annual layer counting, available back to 60 ka (i.e. thousands of years before 1950) for Greenland ice cores. While several complementary orbital tuning tools have recently been developed using <i>δ</i><sup>18</sup>O<sub>atm</sub>, <i>δ</i>O<sub>2</sub>&frasl;N<sub>2</sub> and air content with different orbital targets, quantifying their uncertainties remains a challenge. Indeed, the exact processes linking variations of these parameters, measured in the air trapped in ice, to their orbital targets are not yet fully understood. Here, we provide new series of <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> and <i>δ</i><sup>18</sup>O<sub>atm</sub> data encompassing Marine Isotopic Stage (MIS) 5 (between 100 and 160 ka) and the oldest part (340&ndash;800 ka) of the East Antarctic EPICA Dome C (EDC) ice core. For the first time, the measurements over MIS 5 allow an inter-comparison of <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> and <i>δ</i><sup>18</sup>O<sub>atm</sub> records from three East Antarctic ice core sites (EDC, Vostok and Dome F). This comparison highlights some site-specific <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> variations. Such an observation, the evidence of a 100 ka periodicity in the <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> signal and the difficulty to identify extrema and mid-slopes in <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> increase the uncertainty associated with the use of <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> as an orbital tuning tool, now calculated to be 3&ndash;4 ka. When combining records of <i>δ</i><sup>18</sup>O<sub>atm</sub> and <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> from Vostok and EDC, we find a loss of orbital signature for these two parameters during periods of minimum eccentricity (∼ 400 ka, ∼ 720&ndash;800 ka). Our data set reveals a time-varying offset between <i>δ</i>O<sub>2</sub>∕N<sub>2</sub> and <i>δ</i><sup>18</sup>O<sub>atm</sub> records over the last 800 ka that we interpret as variations in the lagged response of <i>δ</i><sup>18</sup>O<sub>atm</sub> to precession. The largest offsets are identified during Terminations II, MIS 8 and MIS 16, corresponding to periods of destabilization of the Northern polar ice sheets. We therefore suggest that the occurrence of Heinrich–like events influences the response of <i>δ</i><sup>18</sup>O<sub>atm</sub> to precession.http://www.clim-past.net/12/729/2016/cp-12-729-2016.pdf
spellingShingle L. Bazin
A. Landais
E. Capron
V. Masson-Delmotte
C. Ritz
G. Picard
J. Jouzel
M. Dumont
M. Leuenberger
F. Prié
Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores
Climate of the Past
title Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores
title_full Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores
title_fullStr Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores
title_full_unstemmed Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores
title_short Phase relationships between orbital forcing and the composition of air trapped in Antarctic ice cores
title_sort phase relationships between orbital forcing and the composition of air trapped in antarctic ice cores
url http://www.clim-past.net/12/729/2016/cp-12-729-2016.pdf
work_keys_str_mv AT lbazin phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores
AT alandais phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores
AT ecapron phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores
AT vmassondelmotte phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores
AT critz phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores
AT gpicard phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores
AT jjouzel phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores
AT mdumont phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores
AT mleuenberger phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores
AT fprie phaserelationshipsbetweenorbitalforcingandthecompositionofairtrappedinantarcticicecores