Energy-momentum tensor in QCD: nucleon mass decomposition and mechanical equilibrium

Abstract We review and examine in detail recent developments regarding the question of the nucleon mass decomposition. We discuss in particular the virial theorem in quantum field theory and its implications for the nucleon mass decomposition and mechanical equilibrium. We reconsider the renormaliza...

Full description

Bibliographic Details
Main Authors: Cédric Lorcé, Andreas Metz, Barbara Pasquini, Simone Rodini
Format: Article
Language:English
Published: SpringerOpen 2021-11-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP11(2021)121
Description
Summary:Abstract We review and examine in detail recent developments regarding the question of the nucleon mass decomposition. We discuss in particular the virial theorem in quantum field theory and its implications for the nucleon mass decomposition and mechanical equilibrium. We reconsider the renormalization of the QCD energy-momentum tensor in minimal-subtraction-type schemes and the physical interpretation of its components, as well as the role played by the trace anomaly and Poincaré symmetry. We also study the concept of “quantum anomalous energy” proposed in some works as a new contribution to the nucleon mass. Examining the various arguments, we conclude that the quantum anomalous energy is not a genuine contribution to the mass sum rule, as a consequence of translation symmetry.
ISSN:1029-8479