Boundary behaviour of analytic functions in spaces of Dirichlet type

<p/> <p>For <inline-formula><graphic file="1029-242X-2006-92795-i1.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2006-92795-i2.gif"/></inline-formula>, we let <inline-formula><graphic file="1029-...

Full description

Bibliographic Details
Main Authors: Pel&#225;ez Jos&#233; &#193;ngel, Girela Daniel
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2006/927957
_version_ 1818912398445117440
author Pel&#225;ez Jos&#233; &#193;ngel
Girela Daniel
author_facet Pel&#225;ez Jos&#233; &#193;ngel
Girela Daniel
author_sort Pel&#225;ez Jos&#233; &#193;ngel
collection DOAJ
description <p/> <p>For <inline-formula><graphic file="1029-242X-2006-92795-i1.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2006-92795-i2.gif"/></inline-formula>, we let <inline-formula><graphic file="1029-242X-2006-92795-i3.gif"/></inline-formula> be the space of all analytic functions <inline-formula><graphic file="1029-242X-2006-92795-i4.gif"/></inline-formula> in <inline-formula><graphic file="1029-242X-2006-92795-i5.gif"/></inline-formula> such that <inline-formula><graphic file="1029-242X-2006-92795-i6.gif"/></inline-formula> belongs to the weighted Bergman space <inline-formula><graphic file="1029-242X-2006-92795-i7.gif"/></inline-formula>. We obtain a number of sharp results concerning the existence of tangential limits for functions in the spaces <inline-formula><graphic file="1029-242X-2006-92795-i8.gif"/></inline-formula>. We also study the size of the exceptional set <inline-formula><graphic file="1029-242X-2006-92795-i9.gif"/></inline-formula>, where <inline-formula><graphic file="1029-242X-2006-92795-i10.gif"/></inline-formula> denotes the radial variation of <inline-formula><graphic file="1029-242X-2006-92795-i11.gif"/></inline-formula> along the radius <inline-formula><graphic file="1029-242X-2006-92795-i12.gif"/></inline-formula>, for functions <inline-formula><graphic file="1029-242X-2006-92795-i13.gif"/></inline-formula>.</p>
first_indexed 2024-12-19T23:13:58Z
format Article
id doaj.art-ab22acd8347e47888df1f71a86c2c12d
institution Directory Open Access Journal
issn 1025-5834
1029-242X
language English
last_indexed 2024-12-19T23:13:58Z
publishDate 2006-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-ab22acd8347e47888df1f71a86c2c12d2022-12-21T20:02:08ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2006-01-0120061927957Boundary behaviour of analytic functions in spaces of Dirichlet typePel&#225;ez Jos&#233; &#193;ngelGirela Daniel<p/> <p>For <inline-formula><graphic file="1029-242X-2006-92795-i1.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2006-92795-i2.gif"/></inline-formula>, we let <inline-formula><graphic file="1029-242X-2006-92795-i3.gif"/></inline-formula> be the space of all analytic functions <inline-formula><graphic file="1029-242X-2006-92795-i4.gif"/></inline-formula> in <inline-formula><graphic file="1029-242X-2006-92795-i5.gif"/></inline-formula> such that <inline-formula><graphic file="1029-242X-2006-92795-i6.gif"/></inline-formula> belongs to the weighted Bergman space <inline-formula><graphic file="1029-242X-2006-92795-i7.gif"/></inline-formula>. We obtain a number of sharp results concerning the existence of tangential limits for functions in the spaces <inline-formula><graphic file="1029-242X-2006-92795-i8.gif"/></inline-formula>. We also study the size of the exceptional set <inline-formula><graphic file="1029-242X-2006-92795-i9.gif"/></inline-formula>, where <inline-formula><graphic file="1029-242X-2006-92795-i10.gif"/></inline-formula> denotes the radial variation of <inline-formula><graphic file="1029-242X-2006-92795-i11.gif"/></inline-formula> along the radius <inline-formula><graphic file="1029-242X-2006-92795-i12.gif"/></inline-formula>, for functions <inline-formula><graphic file="1029-242X-2006-92795-i13.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/2006/927957
spellingShingle Pel&#225;ez Jos&#233; &#193;ngel
Girela Daniel
Boundary behaviour of analytic functions in spaces of Dirichlet type
Journal of Inequalities and Applications
title Boundary behaviour of analytic functions in spaces of Dirichlet type
title_full Boundary behaviour of analytic functions in spaces of Dirichlet type
title_fullStr Boundary behaviour of analytic functions in spaces of Dirichlet type
title_full_unstemmed Boundary behaviour of analytic functions in spaces of Dirichlet type
title_short Boundary behaviour of analytic functions in spaces of Dirichlet type
title_sort boundary behaviour of analytic functions in spaces of dirichlet type
url http://www.journalofinequalitiesandapplications.com/content/2006/927957
work_keys_str_mv AT pel225ezjos233193ngel boundarybehaviourofanalyticfunctionsinspacesofdirichlettype
AT gireladaniel boundarybehaviourofanalyticfunctionsinspacesofdirichlettype