Microstructure and Mechanical Properties of Magnesium Matrix Composites Interpenetrated by Different Reinforcement

The present work discusses the microstructure and mechanical properties of the as-cast and as-extruded metal matrix composites interpenetrated by stainless steel (Fe⁻18Cr⁻9Ni), titanium alloy (Ti⁻6Al⁻4V), and aluminum alloy (Al⁻5Mg⁻3Zn) thr...

Full description

Bibliographic Details
Main Authors: Shuxu Wu, Shouren Wang, Daosheng Wen, Gaoqi Wang, Yong Wang
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/8/11/2012
Description
Summary:The present work discusses the microstructure and mechanical properties of the as-cast and as-extruded metal matrix composites interpenetrated by stainless steel (Fe⁻18Cr⁻9Ni), titanium alloy (Ti⁻6Al⁻4V), and aluminum alloy (Al⁻5Mg⁻3Zn) three-dimensional network reinforcement materials. The results show that the different reinforcement materials have different degrees of improvement on the microstructures and mechanical properties of the magnesium matrix composites. Among them, magnesium matrix composites interpenetrated by stainless steel reinforcement have maximum tensile strength, yield strength, and elongation, which are 355 MPa, 241 MPa, and 13%, respectively. Compared with the matrix, it increases by 47.9%, 60.7% and 85.7%, respectively. Moreover, compared with the as-cast state, the as-extruded sample has a relatively small grain size and a uniform size distribution. The grain size of the as-cast magnesium matrix composites is mainly concentrated at 200⁻300 μm, whereas the extruded state is mainly concentrated at 10⁻30 μm. The reason is that the coordination deformation of reinforcement and matrix, and the occurrence of dynamic recrystallization, cause grain refinement of magnesium matrix composite during the extrusion process, thereby improving its mechanical properties. Moreover, the improvement is attributed to the effect of the reinforcement itself, and the degree of grain refinement of the metal matrix composites.
ISSN:2076-3417