Design and Experiment of a Targeted Variable Fertilization Control System for Deep Application of Liquid Fertilizer

Given the problems of targeted variable deep application of liquid fertilizer in the field, such as low precision, inaccurate fertilization amount, and poor fertilization effect, a targeted variable fertilization control system of liquid fertilizer based on a fuzzy PID algorithm was designed in this...

Full description

Bibliographic Details
Main Authors: Wenqi Zhou, Tianhao An, Jinwu Wang, Qiang Fu, Nuan Wen, Xiaobo Sun, Qi Wang, Ziming Liu
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/13/7/1687
Description
Summary:Given the problems of targeted variable deep application of liquid fertilizer in the field, such as low precision, inaccurate fertilization amount, and poor fertilization effect, a targeted variable fertilization control system of liquid fertilizer based on a fuzzy PID algorithm was designed in this study to realize the combination of precise variable fertilization technology and targeted deep-fertilization technology. Specifically, the fertilization equipment and adaptive fuzzy PID control strategy of targeted variable fertilization were designed first. Then, the mathematical model of the targeted variable fertilization control system of liquid fertilizer was established following the requirements of intertillage and fertilization of corn crops. Afterward, the response time and overshoot of the control system were simulated through the Simulink tool of MATLAB software, in which the fuzzy PID control and traditional PID control were compared. Then, the control effect of the targeted variable fertilization control system was verified through field experiments. The test results demonstrated that in the process of simulation analysis, the response time of the variable fertilization control system based on fuzzy PID control was shortened by nearly 5 s on average compared to the system based on traditional PID control, and the error was controlled within 10%. In the field test, the target rate of targeted variable fertilization equipment for liquid fertilizer reached more than 80%, and the control accuracy of the liquid fertilizer application amount also remained above 90%. Finally, the tracking experiment to check the fertilization effect proved that the targeted variable deep-fertilization method of liquid fertilizer could further improve the yield of maize crops under the premise of reducing the fertilization cost. The study provides a feasible solution for the method of precise variable fertilization combined with targeted fertilization.
ISSN:2073-4395