Nordhaus-Gaddum bounds for upper total domination

A set \(S\) of vertices in an isolate-free graph \(G\) is a total dominating set if every vertex in \(G\) is adjacent to a vertex in \(S\). A total dominating set of \(G\) is minimal if it contains no total dominating set of \(G\) as a proper subset. The upper total domination number \(\Gamma_t(G)\)...

Full description

Bibliographic Details
Main Authors: Teresa W. Haynes, Michael A. Henning
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2022-06-01
Series:Opuscula Mathematica
Subjects:
Online Access:https://www.opuscula.agh.edu.pl/vol42/4/art/opuscula_math_4226.pdf
_version_ 1818242275796320256
author Teresa W. Haynes
Michael A. Henning
author_facet Teresa W. Haynes
Michael A. Henning
author_sort Teresa W. Haynes
collection DOAJ
description A set \(S\) of vertices in an isolate-free graph \(G\) is a total dominating set if every vertex in \(G\) is adjacent to a vertex in \(S\). A total dominating set of \(G\) is minimal if it contains no total dominating set of \(G\) as a proper subset. The upper total domination number \(\Gamma_t(G)\) of \(G\) is the maximum cardinality of a minimal total dominating set in \(G\). We establish Nordhaus-Gaddum bounds involving the upper total domination numbers of a graph \(G\) and its complement \(\overline{G}\). We prove that if \(G\) is a graph of order \(n\) such that both \(G\) and \(\overline{G}\) are isolate-free, then \(\Gamma_t(G) + \Gamma_t(\overline{G}) \leq n + 2\) and \(\Gamma_t(G)\Gamma_t(\overline{G}) \leq \frac{1}{4}(n+2)^2\), and these bounds are tight.
first_indexed 2024-12-12T13:42:39Z
format Article
id doaj.art-ab46518842264960ab34dcff65eab170
institution Directory Open Access Journal
issn 1232-9274
language English
last_indexed 2024-12-12T13:42:39Z
publishDate 2022-06-01
publisher AGH Univeristy of Science and Technology Press
record_format Article
series Opuscula Mathematica
spelling doaj.art-ab46518842264960ab34dcff65eab1702022-12-22T00:22:45ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742022-06-01424573582https://doi.org/10.7494/OpMath.2022.42.4.5734226Nordhaus-Gaddum bounds for upper total dominationTeresa W. Haynes0Michael A. Henning1East Tennessee State University, Department of Mathematics and Statistics, Johnson City, TN 37614-0002 USAUniversity of Johannesburg, Department of Mathematics and Applied Mathematics, Auckland Park, 2006 South AfricaA set \(S\) of vertices in an isolate-free graph \(G\) is a total dominating set if every vertex in \(G\) is adjacent to a vertex in \(S\). A total dominating set of \(G\) is minimal if it contains no total dominating set of \(G\) as a proper subset. The upper total domination number \(\Gamma_t(G)\) of \(G\) is the maximum cardinality of a minimal total dominating set in \(G\). We establish Nordhaus-Gaddum bounds involving the upper total domination numbers of a graph \(G\) and its complement \(\overline{G}\). We prove that if \(G\) is a graph of order \(n\) such that both \(G\) and \(\overline{G}\) are isolate-free, then \(\Gamma_t(G) + \Gamma_t(\overline{G}) \leq n + 2\) and \(\Gamma_t(G)\Gamma_t(\overline{G}) \leq \frac{1}{4}(n+2)^2\), and these bounds are tight.https://www.opuscula.agh.edu.pl/vol42/4/art/opuscula_math_4226.pdfupper total dominationnordhaus-gaddum bounds
spellingShingle Teresa W. Haynes
Michael A. Henning
Nordhaus-Gaddum bounds for upper total domination
Opuscula Mathematica
upper total domination
nordhaus-gaddum bounds
title Nordhaus-Gaddum bounds for upper total domination
title_full Nordhaus-Gaddum bounds for upper total domination
title_fullStr Nordhaus-Gaddum bounds for upper total domination
title_full_unstemmed Nordhaus-Gaddum bounds for upper total domination
title_short Nordhaus-Gaddum bounds for upper total domination
title_sort nordhaus gaddum bounds for upper total domination
topic upper total domination
nordhaus-gaddum bounds
url https://www.opuscula.agh.edu.pl/vol42/4/art/opuscula_math_4226.pdf
work_keys_str_mv AT teresawhaynes nordhausgaddumboundsforuppertotaldomination
AT michaelahenning nordhausgaddumboundsforuppertotaldomination