Nordhaus-Gaddum bounds for upper total domination
A set \(S\) of vertices in an isolate-free graph \(G\) is a total dominating set if every vertex in \(G\) is adjacent to a vertex in \(S\). A total dominating set of \(G\) is minimal if it contains no total dominating set of \(G\) as a proper subset. The upper total domination number \(\Gamma_t(G)\)...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2022-06-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | https://www.opuscula.agh.edu.pl/vol42/4/art/opuscula_math_4226.pdf |
_version_ | 1818242275796320256 |
---|---|
author | Teresa W. Haynes Michael A. Henning |
author_facet | Teresa W. Haynes Michael A. Henning |
author_sort | Teresa W. Haynes |
collection | DOAJ |
description | A set \(S\) of vertices in an isolate-free graph \(G\) is a total dominating set if every vertex in \(G\) is adjacent to a vertex in \(S\). A total dominating set of \(G\) is minimal if it contains no total dominating set of \(G\) as a proper subset. The upper total domination number \(\Gamma_t(G)\) of \(G\) is the maximum cardinality of a minimal total dominating set in \(G\). We establish Nordhaus-Gaddum bounds involving the upper total domination numbers of a graph \(G\) and its complement \(\overline{G}\). We prove that if \(G\) is a graph of order \(n\) such that both \(G\) and \(\overline{G}\) are isolate-free, then \(\Gamma_t(G) + \Gamma_t(\overline{G}) \leq n + 2\) and \(\Gamma_t(G)\Gamma_t(\overline{G}) \leq \frac{1}{4}(n+2)^2\), and these bounds are tight. |
first_indexed | 2024-12-12T13:42:39Z |
format | Article |
id | doaj.art-ab46518842264960ab34dcff65eab170 |
institution | Directory Open Access Journal |
issn | 1232-9274 |
language | English |
last_indexed | 2024-12-12T13:42:39Z |
publishDate | 2022-06-01 |
publisher | AGH Univeristy of Science and Technology Press |
record_format | Article |
series | Opuscula Mathematica |
spelling | doaj.art-ab46518842264960ab34dcff65eab1702022-12-22T00:22:45ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742022-06-01424573582https://doi.org/10.7494/OpMath.2022.42.4.5734226Nordhaus-Gaddum bounds for upper total dominationTeresa W. Haynes0Michael A. Henning1East Tennessee State University, Department of Mathematics and Statistics, Johnson City, TN 37614-0002 USAUniversity of Johannesburg, Department of Mathematics and Applied Mathematics, Auckland Park, 2006 South AfricaA set \(S\) of vertices in an isolate-free graph \(G\) is a total dominating set if every vertex in \(G\) is adjacent to a vertex in \(S\). A total dominating set of \(G\) is minimal if it contains no total dominating set of \(G\) as a proper subset. The upper total domination number \(\Gamma_t(G)\) of \(G\) is the maximum cardinality of a minimal total dominating set in \(G\). We establish Nordhaus-Gaddum bounds involving the upper total domination numbers of a graph \(G\) and its complement \(\overline{G}\). We prove that if \(G\) is a graph of order \(n\) such that both \(G\) and \(\overline{G}\) are isolate-free, then \(\Gamma_t(G) + \Gamma_t(\overline{G}) \leq n + 2\) and \(\Gamma_t(G)\Gamma_t(\overline{G}) \leq \frac{1}{4}(n+2)^2\), and these bounds are tight.https://www.opuscula.agh.edu.pl/vol42/4/art/opuscula_math_4226.pdfupper total dominationnordhaus-gaddum bounds |
spellingShingle | Teresa W. Haynes Michael A. Henning Nordhaus-Gaddum bounds for upper total domination Opuscula Mathematica upper total domination nordhaus-gaddum bounds |
title | Nordhaus-Gaddum bounds for upper total domination |
title_full | Nordhaus-Gaddum bounds for upper total domination |
title_fullStr | Nordhaus-Gaddum bounds for upper total domination |
title_full_unstemmed | Nordhaus-Gaddum bounds for upper total domination |
title_short | Nordhaus-Gaddum bounds for upper total domination |
title_sort | nordhaus gaddum bounds for upper total domination |
topic | upper total domination nordhaus-gaddum bounds |
url | https://www.opuscula.agh.edu.pl/vol42/4/art/opuscula_math_4226.pdf |
work_keys_str_mv | AT teresawhaynes nordhausgaddumboundsforuppertotaldomination AT michaelahenning nordhausgaddumboundsforuppertotaldomination |