Asymmetric Scattering and Reciprocity in a Plasmonic Dimer

We study the scattering of polarized light by two equal corner stacked Au nanorods that exhibit strong electromagnetic coupling. In the far field, this plasmonic dimer manifests very prominent asymmetric scattering in the transverse direction. Calculations based on a system of two coupled oscillator...

Full description

Bibliographic Details
Main Authors: Mehmet Ali Kuntman, Ertan Kuntman, Oriol Arteaga
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/11/1790
Description
Summary:We study the scattering of polarized light by two equal corner stacked Au nanorods that exhibit strong electromagnetic coupling. In the far field, this plasmonic dimer manifests very prominent asymmetric scattering in the transverse direction. Calculations based on a system of two coupled oscillators, as well as simulations based on the boundary element method, show that, while in one configuration both vertical and horizontal polarization states are scattered to the detector, when we interchange the source and the detector, the scattered intensity of the horizontal polarization drops to zero. Following Perrin’s criterion, it can be shown that this system, as well as any other linear system not involving magneto-optical effects, obeys the optical reciprocity principle. We show that the optical response of the plasmonic dimer, while preserving electromagnetic reciprocity, can be used for the non-reciprocal transfer of signals at a subwavelength scale.
ISSN:2073-8994