Application of ANN to evaluate effective parameters affecting failure load and displacement of RC buildings
This study investigated the efficiency of an artificial neural network (ANN) in predicting and determining failure load and failure displacement of multi story reinforced concrete (RC) buildings. The study modeled a RC building with four stories and three bays, with a load bearing system composed of...
Κύριος συγγραφέας: | M. Hakan Arslan |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
Copernicus Publications
2009-06-01
|
Σειρά: | Natural Hazards and Earth System Sciences |
Διαθέσιμο Online: | http://www.nat-hazards-earth-syst-sci.net/9/967/2009/nhess-9-967-2009.pdf |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Predicting the Ultimate Load Capacity of R.C. Beams by ANN
ανά: Majid A. AL – Jurmaa
Έκδοση: (2011-03-01) -
Predicting the Ultimate Load Capacity of R.C. Beams by ANN
ανά: Majid Majid A. AL-Jurmaa
Έκδοση: (2013-04-01) -
Determination of displacement and failure loads formed in reinforced concrete construction with overhang and without overhang by ANN modeling
ανά: Donduren Mahmud Sami
Έκδοση: (2012-06-01) -
Parameters Affect Flexural Mechanism to Prevent Progressive Collapse of RC Buildings
ανά: Z.M. Najem, κ.ά.
Έκδοση: (2023-07-01) -
A Hybrid ANN-GA Model for an Automated Rapid Vulnerability Assessment of Existing RC Buildings
ανά: Mehmet Akif Bülbül, κ.ά.
Έκδοση: (2022-05-01)