Computational identification of new potential transcriptional partners of ERRα in breast cancer cells: specific partners for specific targets

Abstract Estrogen related receptors are orphan members of the nuclear receptor superfamily acting as transcription factors (TFs). In contrast to classical nuclear receptors, the activities of the ERRs are not controlled by a natural ligand. Regulation of their activities thus relies on availability...

Full description

Bibliographic Details
Main Authors: Catherine Cerutti, Ling Zhang, Violaine Tribollet, Jing-Ru Shi, Riwan Brillet, Benjamin Gillet, Sandrine Hughes, Christelle Forcet, Tie-Liu Shi, Jean-Marc Vanacker
Format: Article
Language:English
Published: Nature Portfolio 2022-03-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-07744-w
_version_ 1819236733666983936
author Catherine Cerutti
Ling Zhang
Violaine Tribollet
Jing-Ru Shi
Riwan Brillet
Benjamin Gillet
Sandrine Hughes
Christelle Forcet
Tie-Liu Shi
Jean-Marc Vanacker
author_facet Catherine Cerutti
Ling Zhang
Violaine Tribollet
Jing-Ru Shi
Riwan Brillet
Benjamin Gillet
Sandrine Hughes
Christelle Forcet
Tie-Liu Shi
Jean-Marc Vanacker
author_sort Catherine Cerutti
collection DOAJ
description Abstract Estrogen related receptors are orphan members of the nuclear receptor superfamily acting as transcription factors (TFs). In contrast to classical nuclear receptors, the activities of the ERRs are not controlled by a natural ligand. Regulation of their activities thus relies on availability of transcriptional co-regulators. In this paper, we focus on ERRα, whose involvement in cancer progression has been broadly demonstrated. We propose a new approach to identify potential co-activators, starting from previously identified ERRα-activated genes in a breast cancer (BC) cell line. Considering mRNA gene expression from two sets of human BC cells as major endpoint, we used sparse partial least squares modeling to uncover new transcriptional regulators associated with ERRα. Among them, DDX21, MYBBP1A, NFKB1, and SETD7 are functionally relevant in MDA-MB-231 cells, specifically activating the expression of subsets of ERRα-activated genes. We studied SET7 in more details and showed its co-localization with ERRα and its ERRα-dependent transcriptional and phenotypic effects. Our results thus demonstrate the ability of a modeling approach to identify new transcriptional partners from gene expression. Finally, experimental results show that ERRα cooperates with distinct co-regulators to control the expression of distinct sets of target genes, thus reinforcing the combinatorial specificity of transcription.
first_indexed 2024-12-23T13:09:08Z
format Article
id doaj.art-ab50ff1f34e74eb59182eba683a88fbf
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-12-23T13:09:08Z
publishDate 2022-03-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-ab50ff1f34e74eb59182eba683a88fbf2022-12-21T17:45:48ZengNature PortfolioScientific Reports2045-23222022-03-0112111510.1038/s41598-022-07744-wComputational identification of new potential transcriptional partners of ERRα in breast cancer cells: specific partners for specific targetsCatherine Cerutti0Ling Zhang1Violaine Tribollet2Jing-Ru Shi3Riwan Brillet4Benjamin Gillet5Sandrine Hughes6Christelle Forcet7Tie-Liu Shi8Jean-Marc Vanacker9Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de LyonInstitut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de LyonInstitut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de LyonInstitut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de LyonInstitut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de LyonInstitut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de LyonInstitut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de LyonInstitut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de LyonThe Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityInstitut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de LyonAbstract Estrogen related receptors are orphan members of the nuclear receptor superfamily acting as transcription factors (TFs). In contrast to classical nuclear receptors, the activities of the ERRs are not controlled by a natural ligand. Regulation of their activities thus relies on availability of transcriptional co-regulators. In this paper, we focus on ERRα, whose involvement in cancer progression has been broadly demonstrated. We propose a new approach to identify potential co-activators, starting from previously identified ERRα-activated genes in a breast cancer (BC) cell line. Considering mRNA gene expression from two sets of human BC cells as major endpoint, we used sparse partial least squares modeling to uncover new transcriptional regulators associated with ERRα. Among them, DDX21, MYBBP1A, NFKB1, and SETD7 are functionally relevant in MDA-MB-231 cells, specifically activating the expression of subsets of ERRα-activated genes. We studied SET7 in more details and showed its co-localization with ERRα and its ERRα-dependent transcriptional and phenotypic effects. Our results thus demonstrate the ability of a modeling approach to identify new transcriptional partners from gene expression. Finally, experimental results show that ERRα cooperates with distinct co-regulators to control the expression of distinct sets of target genes, thus reinforcing the combinatorial specificity of transcription.https://doi.org/10.1038/s41598-022-07744-w
spellingShingle Catherine Cerutti
Ling Zhang
Violaine Tribollet
Jing-Ru Shi
Riwan Brillet
Benjamin Gillet
Sandrine Hughes
Christelle Forcet
Tie-Liu Shi
Jean-Marc Vanacker
Computational identification of new potential transcriptional partners of ERRα in breast cancer cells: specific partners for specific targets
Scientific Reports
title Computational identification of new potential transcriptional partners of ERRα in breast cancer cells: specific partners for specific targets
title_full Computational identification of new potential transcriptional partners of ERRα in breast cancer cells: specific partners for specific targets
title_fullStr Computational identification of new potential transcriptional partners of ERRα in breast cancer cells: specific partners for specific targets
title_full_unstemmed Computational identification of new potential transcriptional partners of ERRα in breast cancer cells: specific partners for specific targets
title_short Computational identification of new potential transcriptional partners of ERRα in breast cancer cells: specific partners for specific targets
title_sort computational identification of new potential transcriptional partners of errα in breast cancer cells specific partners for specific targets
url https://doi.org/10.1038/s41598-022-07744-w
work_keys_str_mv AT catherinecerutti computationalidentificationofnewpotentialtranscriptionalpartnersoferrainbreastcancercellsspecificpartnersforspecifictargets
AT lingzhang computationalidentificationofnewpotentialtranscriptionalpartnersoferrainbreastcancercellsspecificpartnersforspecifictargets
AT violainetribollet computationalidentificationofnewpotentialtranscriptionalpartnersoferrainbreastcancercellsspecificpartnersforspecifictargets
AT jingrushi computationalidentificationofnewpotentialtranscriptionalpartnersoferrainbreastcancercellsspecificpartnersforspecifictargets
AT riwanbrillet computationalidentificationofnewpotentialtranscriptionalpartnersoferrainbreastcancercellsspecificpartnersforspecifictargets
AT benjamingillet computationalidentificationofnewpotentialtranscriptionalpartnersoferrainbreastcancercellsspecificpartnersforspecifictargets
AT sandrinehughes computationalidentificationofnewpotentialtranscriptionalpartnersoferrainbreastcancercellsspecificpartnersforspecifictargets
AT christelleforcet computationalidentificationofnewpotentialtranscriptionalpartnersoferrainbreastcancercellsspecificpartnersforspecifictargets
AT tieliushi computationalidentificationofnewpotentialtranscriptionalpartnersoferrainbreastcancercellsspecificpartnersforspecifictargets
AT jeanmarcvanacker computationalidentificationofnewpotentialtranscriptionalpartnersoferrainbreastcancercellsspecificpartnersforspecifictargets