Summary: | We must move toward electrification of the transportation sector to help mitigate the adverse impacts of climate change. Carbon emission reduction in long-haul freight transport should be developed and administered given it accounts for 22% of transportation related emissions worldwide. Although electrified transport can make tail-pipe vehicle carbon emissions negligible, it does not mean that the entire system that supports electrified transport is carbon-neutral. We address this latter point in the present study by conducting a cradle-to-grave life cycle assessment of long-haul electric trucks that are powered by overhead cable lines (OCL). The environmental impacts were compared with those of battery electric vehicle trucks (BEV), and conventional diesel-powered trucks. The techno-economic analysis of long-haul freight OCL technology was conducted based on data from pilot-scale studies in Germany. The feasibility of implementing this technology in other countries was examined by comparing environmental impacts across respective electricity mixes. Results show that the environmental and economic impacts of OCL technology depends on the adoption percent. After analyzing different adoption rate scenarios, OCL adoption was found to be economically and environmentally beneficial at the 10% adoption rate or higher. We also found that use phase electricity accounts for over 83% of the net greenhouse gas emissions, thereby making the electricity mix powering this technology a determining factor for implementation around the world. Across their life cycles, the carbon footprint of both OCL and BEV was 2.5 times lesser than that of the conventional truck. Other findings reveal adaptable methods, a unique environmental-to-economic ratio measure, and equity considerations that can be leveraged for immediate decision-making activities and future studies alike.
|