T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear Schrödinger

Abstract The T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed classical Lagrangian of a 2D Lorentz invariant theory can be derived from the original one, perturbed only at first order by the bare T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ composite field, through a field-dependent change of co...

Full description

Bibliographic Details
Main Authors: Paolo Ceschin, Riccardo Conti, Roberto Tateo
Format: Article
Language:English
Published: SpringerOpen 2021-04-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP04(2021)121
_version_ 1819284151760584704
author Paolo Ceschin
Riccardo Conti
Roberto Tateo
author_facet Paolo Ceschin
Riccardo Conti
Roberto Tateo
author_sort Paolo Ceschin
collection DOAJ
description Abstract The T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed classical Lagrangian of a 2D Lorentz invariant theory can be derived from the original one, perturbed only at first order by the bare T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ composite field, through a field-dependent change of coordinates. Considering, as an example, the nonlinear Schrödinger (NLS) model with generic potential, we apply this idea to non-relativistic models. The form of the deformed Lagrangian contains a square-root and is similar but different from that for relativistic bosons. We study the deformed bright, grey and Peregrine’s soliton solutions. Contrary to naive expectations, the T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -perturbation of nonlinear Schrödinger NLS with quartic potential does not trivially emerge from a standard non-relativistic limit of the deformed sinh-Gordon field theory. The c → ∞ outcome corresponds to a different type of irrelevant deformation. We derive the corresponding Poisson bracket structure, the equations of motion and discuss various interesting aspects of this alternative type of perturbation, including links with the recent literature.
first_indexed 2024-12-24T01:42:49Z
format Article
id doaj.art-ab7663c7d5554daaa5e96c5f132a4702
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-12-24T01:42:49Z
publishDate 2021-04-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-ab7663c7d5554daaa5e96c5f132a47022022-12-21T17:21:57ZengSpringerOpenJournal of High Energy Physics1029-84792021-04-012021412210.1007/JHEP04(2021)121T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear SchrödingerPaolo Ceschin0Riccardo Conti1Roberto Tateo2Dipartimento di Fisica and Arnold-Regge Center, Università di TorinoGrupo de Física Matemática da Universidade de LisboaDipartimento di Fisica and Arnold-Regge Center, Università di TorinoAbstract The T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed classical Lagrangian of a 2D Lorentz invariant theory can be derived from the original one, perturbed only at first order by the bare T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ composite field, through a field-dependent change of coordinates. Considering, as an example, the nonlinear Schrödinger (NLS) model with generic potential, we apply this idea to non-relativistic models. The form of the deformed Lagrangian contains a square-root and is similar but different from that for relativistic bosons. We study the deformed bright, grey and Peregrine’s soliton solutions. Contrary to naive expectations, the T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -perturbation of nonlinear Schrödinger NLS with quartic potential does not trivially emerge from a standard non-relativistic limit of the deformed sinh-Gordon field theory. The c → ∞ outcome corresponds to a different type of irrelevant deformation. We derive the corresponding Poisson bracket structure, the equations of motion and discuss various interesting aspects of this alternative type of perturbation, including links with the recent literature.https://doi.org/10.1007/JHEP04(2021)121Bethe AnsatzIntegrable Field Theories
spellingShingle Paolo Ceschin
Riccardo Conti
Roberto Tateo
T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear Schrödinger
Journal of High Energy Physics
Bethe Ansatz
Integrable Field Theories
title T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear Schrödinger
title_full T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear Schrödinger
title_fullStr T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear Schrödinger
title_full_unstemmed T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear Schrödinger
title_short T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear Schrödinger
title_sort t t ¯ mathrm t overline mathrm t deformed nonlinear schrodinger
topic Bethe Ansatz
Integrable Field Theories
url https://doi.org/10.1007/JHEP04(2021)121
work_keys_str_mv AT paoloceschin ttmathrmtoverlinemathrmtdeformednonlinearschrodinger
AT riccardoconti ttmathrmtoverlinemathrmtdeformednonlinearschrodinger
AT robertotateo ttmathrmtoverlinemathrmtdeformednonlinearschrodinger