T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear Schrödinger
Abstract The T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed classical Lagrangian of a 2D Lorentz invariant theory can be derived from the original one, perturbed only at first order by the bare T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ composite field, through a field-dependent change of co...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-04-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP04(2021)121 |
_version_ | 1819284151760584704 |
---|---|
author | Paolo Ceschin Riccardo Conti Roberto Tateo |
author_facet | Paolo Ceschin Riccardo Conti Roberto Tateo |
author_sort | Paolo Ceschin |
collection | DOAJ |
description | Abstract The T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed classical Lagrangian of a 2D Lorentz invariant theory can be derived from the original one, perturbed only at first order by the bare T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ composite field, through a field-dependent change of coordinates. Considering, as an example, the nonlinear Schrödinger (NLS) model with generic potential, we apply this idea to non-relativistic models. The form of the deformed Lagrangian contains a square-root and is similar but different from that for relativistic bosons. We study the deformed bright, grey and Peregrine’s soliton solutions. Contrary to naive expectations, the T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -perturbation of nonlinear Schrödinger NLS with quartic potential does not trivially emerge from a standard non-relativistic limit of the deformed sinh-Gordon field theory. The c → ∞ outcome corresponds to a different type of irrelevant deformation. We derive the corresponding Poisson bracket structure, the equations of motion and discuss various interesting aspects of this alternative type of perturbation, including links with the recent literature. |
first_indexed | 2024-12-24T01:42:49Z |
format | Article |
id | doaj.art-ab7663c7d5554daaa5e96c5f132a4702 |
institution | Directory Open Access Journal |
issn | 1029-8479 |
language | English |
last_indexed | 2024-12-24T01:42:49Z |
publishDate | 2021-04-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of High Energy Physics |
spelling | doaj.art-ab7663c7d5554daaa5e96c5f132a47022022-12-21T17:21:57ZengSpringerOpenJournal of High Energy Physics1029-84792021-04-012021412210.1007/JHEP04(2021)121T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear SchrödingerPaolo Ceschin0Riccardo Conti1Roberto Tateo2Dipartimento di Fisica and Arnold-Regge Center, Università di TorinoGrupo de Física Matemática da Universidade de LisboaDipartimento di Fisica and Arnold-Regge Center, Università di TorinoAbstract The T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed classical Lagrangian of a 2D Lorentz invariant theory can be derived from the original one, perturbed only at first order by the bare T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ composite field, through a field-dependent change of coordinates. Considering, as an example, the nonlinear Schrödinger (NLS) model with generic potential, we apply this idea to non-relativistic models. The form of the deformed Lagrangian contains a square-root and is similar but different from that for relativistic bosons. We study the deformed bright, grey and Peregrine’s soliton solutions. Contrary to naive expectations, the T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -perturbation of nonlinear Schrödinger NLS with quartic potential does not trivially emerge from a standard non-relativistic limit of the deformed sinh-Gordon field theory. The c → ∞ outcome corresponds to a different type of irrelevant deformation. We derive the corresponding Poisson bracket structure, the equations of motion and discuss various interesting aspects of this alternative type of perturbation, including links with the recent literature.https://doi.org/10.1007/JHEP04(2021)121Bethe AnsatzIntegrable Field Theories |
spellingShingle | Paolo Ceschin Riccardo Conti Roberto Tateo T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear Schrödinger Journal of High Energy Physics Bethe Ansatz Integrable Field Theories |
title | T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear Schrödinger |
title_full | T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear Schrödinger |
title_fullStr | T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear Schrödinger |
title_full_unstemmed | T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear Schrödinger |
title_short | T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed nonlinear Schrödinger |
title_sort | t t ¯ mathrm t overline mathrm t deformed nonlinear schrodinger |
topic | Bethe Ansatz Integrable Field Theories |
url | https://doi.org/10.1007/JHEP04(2021)121 |
work_keys_str_mv | AT paoloceschin ttmathrmtoverlinemathrmtdeformednonlinearschrodinger AT riccardoconti ttmathrmtoverlinemathrmtdeformednonlinearschrodinger AT robertotateo ttmathrmtoverlinemathrmtdeformednonlinearschrodinger |