Intravehicular, Short- and Long-Range Communication Information Fusion for Providing Safe Speed Warnings

Inappropriate speed is a relevant concurrent factor in many traffic accidents. Moreover, in recent years, traffic accidents numbers in Spain have fallen sharply, but this reduction has not been so significant on single carriageway roads. These infrastructures have less equipment than high-capacity r...

Full description

Bibliographic Details
Main Authors: Felipe Jiménez, Jose Eugenio Naranjo, Francisco Serradilla, Elisa Pérez, María Jose Hernández, Trinidad Ruiz, José Javier Anaya, Alberto Díaz
Format: Article
Language:English
Published: MDPI AG 2016-01-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/16/1/131
Description
Summary:Inappropriate speed is a relevant concurrent factor in many traffic accidents. Moreover, in recent years, traffic accidents numbers in Spain have fallen sharply, but this reduction has not been so significant on single carriageway roads. These infrastructures have less equipment than high-capacity roads, therefore measures to reduce accidents on them should be implemented in vehicles. This article describes the development and analysis of the impact on the driver of a warning system for the safe speed on each road section in terms of geometry, the presence of traffic jams, weather conditions, type of vehicle and actual driving conditions. This system is based on an application for smartphones and includes knowledge of the vehicle position via Ground Positioning System (GPS), access to intravehicular information from onboard sensors through the Controller Area Network (CAN) bus, vehicle data entry by the driver, access to roadside information (short-range communications) and access to a centralized server with information about the road in the current and following sections of the route (long-range communications). Using this information, the system calculates the safe speed, recommends the appropriate speed in advance in the following sections and provides warnings to the driver. Finally, data are sent from vehicles to a server to generate new information to disseminate to other users or to supervise drivers’ behaviour. Tests in a driving simulator have been used to define the system warnings and Human Machine Interface (HMI) and final tests have been performed on real roads in order to analyze the effect of the system on driver behavior.
ISSN:1424-8220