The Exact Solutions for Several Partial Differential-Difference Equations with Constant Coefficients

This article is concerned with the description of the entire solutions of several Fermat type partial differential-difference equations (PDDEs) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup>&...

Full description

Bibliographic Details
Main Authors: Hongyan Xu, Ling Xu, Hari Mohan Srivastava
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/19/3596
Description
Summary:This article is concerned with the description of the entire solutions of several Fermat type partial differential-difference equations (PDDEs) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mfenced separators="" open="[" close="]"><mi>μ</mi><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>+</mo><mi>λ</mi><msub><mi>f</mi><msub><mi>z</mi><mn>1</mn></msub></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>[</mo><mi>α</mi><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>+</mo><mi>c</mi><mo>)</mo></mrow><mo>−</mo><mi>β</mi><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>]</mo></mrow><mn>2</mn></msup><mo>=</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mfenced separators="" open="[" close="]"><mi>μ</mi><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>λ</mi><mn>1</mn></msub><msub><mi>f</mi><msub><mi>z</mi><mn>1</mn></msub></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>λ</mi><mn>2</mn></msub><msub><mi>f</mi><msub><mi>z</mi><mn>2</mn></msub></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>[</mo><mi>α</mi><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>+</mo><mi>c</mi><mo>)</mo></mrow><mo>−</mo><mi>β</mi><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>]</mo></mrow><mn>2</mn></msup><mo>=</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>f</mi><msub><mi>z</mi><mn>1</mn></msub></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>f</mi></mrow><mrow><mo>∂</mo><msub><mi>z</mi><mn>1</mn></msub></mrow></mfrac></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>f</mi><msub><mi>z</mi><mn>2</mn></msub></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>f</mi></mrow><mrow><mo>∂</mo><msub><mi>z</mi><mn>2</mn></msub></mrow></mfrac></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>=</mo><mrow><mo>(</mo><msub><mi>c</mi><mn>1</mn></msub><mo>,</mo><msub><mi>c</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>∈</mo><msup><mi mathvariant="double-struck">C</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>λ</mi><mo>,</mo><msub><mi>λ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>λ</mi><mn>2</mn></msub><mo>,</mo><msub><mi>c</mi><mn>1</mn></msub><mo>,</mo><msub><mi>c</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> are constants in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">C</mi></semantics></math></inline-formula>. Our theorems in this paper give some descriptions of the forms of transcendental entire solutions for the above equations, which are some extensions and improvement of the previous theorems given by Xu, Cao, Liu, and Yang. In particular, we exhibit a series of examples to explain that the existence conditions and the forms of transcendental entire solutions with a finite order of such equations are precise.
ISSN:2227-7390