Two-Fluid Classical and Momentumless Laminar Far Wakes

Two-dimensional two-fluid classical and momentumless laminar far wakes are investigated in the boundary layer approximation. The velocity deficit satisfies a linear diffusion equation and the continuity equation in the upper and lower parts of the wakes. By using the multiplier method, conservation...

Full description

Bibliographic Details
Main Authors: Kiara Pillay, David Paul Mason
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/5/961
Description
Summary:Two-dimensional two-fluid classical and momentumless laminar far wakes are investigated in the boundary layer approximation. The velocity deficit satisfies a linear diffusion equation and the continuity equation in the upper and lower parts of the wakes. By using the multiplier method, conservation laws for the system of partial differential equations (PDEs) in the upper and lower parts of the wake are derived. Lie point symmetries associated with the conserved vectors for the classical and momentumless wakes are obtained. The conserved quantity for the two-fluid classical wake is the total drag on the obstacle, which is rederived. A new conserved quantity for the two-fluid momentumless wake is obtained, which satisfies the condition that the total drag on the obstacle is zero. Using the conserved quantities, it is shown that the equation of the interface is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><mo>=</mo><mi>k</mi><msup><mi>x</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></mrow></semantics></math></inline-formula>, where <i>k</i> is a constant and <i>x</i> and <i>y</i> are Cartesian coordinates with origin at the trailing edge of the obstacle. New invariant solutions for the two-fluid classical and momentumless wakes with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> are found. Both solutions depend on the dimensionless parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>χ</mi><mo>=</mo><mrow><mo>(</mo><msub><mi>ρ</mi><mn>1</mn></msub><msub><mi>μ</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><msub><mi>ρ</mi><mn>2</mn></msub><msub><mi>μ</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> where suffices 1 and 2 refer to the upper and lower parts of the wake. For the special case in which the kinematic viscosity ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ν</mi><mn>2</mn></msub><mo>/</mo><msub><mi>ν</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, two further solutions for the two-fluid momentumless wake are derived with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mo>±</mo><msqrt><mn>6</mn></msqrt></mrow></semantics></math></inline-formula>.
ISSN:2073-8994