Two-Fluid Classical and Momentumless Laminar Far Wakes

Two-dimensional two-fluid classical and momentumless laminar far wakes are investigated in the boundary layer approximation. The velocity deficit satisfies a linear diffusion equation and the continuity equation in the upper and lower parts of the wakes. By using the multiplier method, conservation...

Full description

Bibliographic Details
Main Authors: Kiara Pillay, David Paul Mason
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/5/961
_version_ 1797598245065588736
author Kiara Pillay
David Paul Mason
author_facet Kiara Pillay
David Paul Mason
author_sort Kiara Pillay
collection DOAJ
description Two-dimensional two-fluid classical and momentumless laminar far wakes are investigated in the boundary layer approximation. The velocity deficit satisfies a linear diffusion equation and the continuity equation in the upper and lower parts of the wakes. By using the multiplier method, conservation laws for the system of partial differential equations (PDEs) in the upper and lower parts of the wake are derived. Lie point symmetries associated with the conserved vectors for the classical and momentumless wakes are obtained. The conserved quantity for the two-fluid classical wake is the total drag on the obstacle, which is rederived. A new conserved quantity for the two-fluid momentumless wake is obtained, which satisfies the condition that the total drag on the obstacle is zero. Using the conserved quantities, it is shown that the equation of the interface is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><mo>=</mo><mi>k</mi><msup><mi>x</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></mrow></semantics></math></inline-formula>, where <i>k</i> is a constant and <i>x</i> and <i>y</i> are Cartesian coordinates with origin at the trailing edge of the obstacle. New invariant solutions for the two-fluid classical and momentumless wakes with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> are found. Both solutions depend on the dimensionless parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>χ</mi><mo>=</mo><mrow><mo>(</mo><msub><mi>ρ</mi><mn>1</mn></msub><msub><mi>μ</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><msub><mi>ρ</mi><mn>2</mn></msub><msub><mi>μ</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> where suffices 1 and 2 refer to the upper and lower parts of the wake. For the special case in which the kinematic viscosity ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ν</mi><mn>2</mn></msub><mo>/</mo><msub><mi>ν</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, two further solutions for the two-fluid momentumless wake are derived with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mo>±</mo><msqrt><mn>6</mn></msqrt></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-11T03:16:36Z
format Article
id doaj.art-ab82c6b913e24045af60e91014dd4090
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-11T03:16:36Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-ab82c6b913e24045af60e91014dd40902023-11-18T03:28:54ZengMDPI AGSymmetry2073-89942023-04-0115596110.3390/sym15050961Two-Fluid Classical and Momentumless Laminar Far WakesKiara Pillay0David Paul Mason1School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg 2050, South AfricaSchool of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg 2050, South AfricaTwo-dimensional two-fluid classical and momentumless laminar far wakes are investigated in the boundary layer approximation. The velocity deficit satisfies a linear diffusion equation and the continuity equation in the upper and lower parts of the wakes. By using the multiplier method, conservation laws for the system of partial differential equations (PDEs) in the upper and lower parts of the wake are derived. Lie point symmetries associated with the conserved vectors for the classical and momentumless wakes are obtained. The conserved quantity for the two-fluid classical wake is the total drag on the obstacle, which is rederived. A new conserved quantity for the two-fluid momentumless wake is obtained, which satisfies the condition that the total drag on the obstacle is zero. Using the conserved quantities, it is shown that the equation of the interface is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><mo>=</mo><mi>k</mi><msup><mi>x</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></mrow></semantics></math></inline-formula>, where <i>k</i> is a constant and <i>x</i> and <i>y</i> are Cartesian coordinates with origin at the trailing edge of the obstacle. New invariant solutions for the two-fluid classical and momentumless wakes with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> are found. Both solutions depend on the dimensionless parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>χ</mi><mo>=</mo><mrow><mo>(</mo><msub><mi>ρ</mi><mn>1</mn></msub><msub><mi>μ</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><msub><mi>ρ</mi><mn>2</mn></msub><msub><mi>μ</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> where suffices 1 and 2 refer to the upper and lower parts of the wake. For the special case in which the kinematic viscosity ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ν</mi><mn>2</mn></msub><mo>/</mo><msub><mi>ν</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, two further solutions for the two-fluid momentumless wake are derived with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mo>±</mo><msqrt><mn>6</mn></msqrt></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2073-8994/15/5/961two-fluid classical and momentumless wakesmultiplier methodconservation lawconserved quantityassociated Lie point symmetryinvariant solution
spellingShingle Kiara Pillay
David Paul Mason
Two-Fluid Classical and Momentumless Laminar Far Wakes
Symmetry
two-fluid classical and momentumless wakes
multiplier method
conservation law
conserved quantity
associated Lie point symmetry
invariant solution
title Two-Fluid Classical and Momentumless Laminar Far Wakes
title_full Two-Fluid Classical and Momentumless Laminar Far Wakes
title_fullStr Two-Fluid Classical and Momentumless Laminar Far Wakes
title_full_unstemmed Two-Fluid Classical and Momentumless Laminar Far Wakes
title_short Two-Fluid Classical and Momentumless Laminar Far Wakes
title_sort two fluid classical and momentumless laminar far wakes
topic two-fluid classical and momentumless wakes
multiplier method
conservation law
conserved quantity
associated Lie point symmetry
invariant solution
url https://www.mdpi.com/2073-8994/15/5/961
work_keys_str_mv AT kiarapillay twofluidclassicalandmomentumlesslaminarfarwakes
AT davidpaulmason twofluidclassicalandmomentumlesslaminarfarwakes