The representation of generalized number operator acting on the Bernoulli functionals space(Bernoulli泛函空间中广义计数算子的表示)

得到离散时间正规鞅平方可积泛函空间L2(M)中广义计数算子Nh的5种表示:(1)量子Bernoulli噪声(quantum Bernoulli noises,QBN)的加权表示;(2)Nh的谱表示,广义计数算子Nh以h-计数测度#h的值域为其点谱;(3)Nh的“对角化”表示,Nh可表示为L2(M)的标准正交基{Zσ;σ∈Γ}所生成的一维对角化正交投影算子的加权极限;(4)广义Skorohod积分-广义随机梯度表示,Nh可表示为互共轭算子δh和∇h的复合算子;(5)对N上的任意非负函数h,可构造一列有界广义计数算子,Nh恰为该有界广义计数算子的强极限,当h可和时,Nh为该有界广义计数算子的一致极...

Full description

Bibliographic Details
Main Authors: ZHOUYulan(周玉兰), CHENJia(陈嘉), KONGHuafang(孔华芳), XUERui(薛蕊), CHENGXiuqiang(程秀强)
Format: Article
Language:zho
Published: Zhejiang University Press 2022-05-01
Series:Zhejiang Daxue xuebao. Lixue ban
Subjects:
Online Access:https://doi.org/10.3785/j.issn.1008-9497.2022.03.008
_version_ 1797235714348285952
author ZHOUYulan(周玉兰)
CHENJia(陈嘉)
KONGHuafang(孔华芳)
XUERui(薛蕊)
CHENGXiuqiang(程秀强)
author_facet ZHOUYulan(周玉兰)
CHENJia(陈嘉)
KONGHuafang(孔华芳)
XUERui(薛蕊)
CHENGXiuqiang(程秀强)
author_sort ZHOUYulan(周玉兰)
collection DOAJ
description 得到离散时间正规鞅平方可积泛函空间L2(M)中广义计数算子Nh的5种表示:(1)量子Bernoulli噪声(quantum Bernoulli noises,QBN)的加权表示;(2)Nh的谱表示,广义计数算子Nh以h-计数测度#h的值域为其点谱;(3)Nh的“对角化”表示,Nh可表示为L2(M)的标准正交基{Zσ;σ∈Γ}所生成的一维对角化正交投影算子的加权极限;(4)广义Skorohod积分-广义随机梯度表示,Nh可表示为互共轭算子δh和∇h的复合算子;(5)对N上的任意非负函数h,可构造一列有界广义计数算子,Nh恰为该有界广义计数算子的强极限,当h可和时,Nh为该有界广义计数算子的一致极限。
first_indexed 2024-04-24T16:52:21Z
format Article
id doaj.art-ab834d2eb06d41df8d9ecb7d762361a0
institution Directory Open Access Journal
issn 1008-9497
language zho
last_indexed 2024-04-24T16:52:21Z
publishDate 2022-05-01
publisher Zhejiang University Press
record_format Article
series Zhejiang Daxue xuebao. Lixue ban
spelling doaj.art-ab834d2eb06d41df8d9ecb7d762361a02024-03-29T01:58:40ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972022-05-0149331632310.3785/j.issn.1008-9497.2022.03.008The representation of generalized number operator acting on the Bernoulli functionals space(Bernoulli泛函空间中广义计数算子的表示)ZHOUYulan(周玉兰)0https://orcid.org/0000-0003-4831-7149CHENJia(陈嘉)1KONGHuafang(孔华芳)2XUERui(薛蕊)3CHENGXiuqiang(程秀强)4College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China(西北师范大学 数学与统计学院,甘肃 兰州 730070)College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China(西北师范大学 数学与统计学院,甘肃 兰州 730070)College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China(西北师范大学 数学与统计学院,甘肃 兰州 730070)College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China(西北师范大学 数学与统计学院,甘肃 兰州 730070)College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China(西北师范大学 数学与统计学院,甘肃 兰州 730070)得到离散时间正规鞅平方可积泛函空间L2(M)中广义计数算子Nh的5种表示:(1)量子Bernoulli噪声(quantum Bernoulli noises,QBN)的加权表示;(2)Nh的谱表示,广义计数算子Nh以h-计数测度#h的值域为其点谱;(3)Nh的“对角化”表示,Nh可表示为L2(M)的标准正交基{Zσ;σ∈Γ}所生成的一维对角化正交投影算子的加权极限;(4)广义Skorohod积分-广义随机梯度表示,Nh可表示为互共轭算子δh和∇h的复合算子;(5)对N上的任意非负函数h,可构造一列有界广义计数算子,Nh恰为该有界广义计数算子的强极限,当h可和时,Nh为该有界广义计数算子的一致极限。https://doi.org/10.3785/j.issn.1008-9497.2022.03.008算子谱广义计数算子对角化算子广义skorohod积分广义随机梯度
spellingShingle ZHOUYulan(周玉兰)
CHENJia(陈嘉)
KONGHuafang(孔华芳)
XUERui(薛蕊)
CHENGXiuqiang(程秀强)
The representation of generalized number operator acting on the Bernoulli functionals space(Bernoulli泛函空间中广义计数算子的表示)
Zhejiang Daxue xuebao. Lixue ban
算子谱
广义计数算子
对角化算子
广义skorohod积分
广义随机梯度
title The representation of generalized number operator acting on the Bernoulli functionals space(Bernoulli泛函空间中广义计数算子的表示)
title_full The representation of generalized number operator acting on the Bernoulli functionals space(Bernoulli泛函空间中广义计数算子的表示)
title_fullStr The representation of generalized number operator acting on the Bernoulli functionals space(Bernoulli泛函空间中广义计数算子的表示)
title_full_unstemmed The representation of generalized number operator acting on the Bernoulli functionals space(Bernoulli泛函空间中广义计数算子的表示)
title_short The representation of generalized number operator acting on the Bernoulli functionals space(Bernoulli泛函空间中广义计数算子的表示)
title_sort representation of generalized number operator acting on the bernoulli functionals space bernoulli泛函空间中广义计数算子的表示
topic 算子谱
广义计数算子
对角化算子
广义skorohod积分
广义随机梯度
url https://doi.org/10.3785/j.issn.1008-9497.2022.03.008
work_keys_str_mv AT zhouyulanzhōuyùlán therepresentationofgeneralizednumberoperatoractingonthebernoullifunctionalsspacebernoullifànhánkōngjiānzhōngguǎngyìjìshùsuànzidebiǎoshì
AT chenjiachénjiā therepresentationofgeneralizednumberoperatoractingonthebernoullifunctionalsspacebernoullifànhánkōngjiānzhōngguǎngyìjìshùsuànzidebiǎoshì
AT konghuafangkǒnghuáfāng therepresentationofgeneralizednumberoperatoractingonthebernoullifunctionalsspacebernoullifànhánkōngjiānzhōngguǎngyìjìshùsuànzidebiǎoshì
AT xueruixuēruǐ therepresentationofgeneralizednumberoperatoractingonthebernoullifunctionalsspacebernoullifànhánkōngjiānzhōngguǎngyìjìshùsuànzidebiǎoshì
AT chengxiuqiangchéngxiùqiáng therepresentationofgeneralizednumberoperatoractingonthebernoullifunctionalsspacebernoullifànhánkōngjiānzhōngguǎngyìjìshùsuànzidebiǎoshì
AT zhouyulanzhōuyùlán representationofgeneralizednumberoperatoractingonthebernoullifunctionalsspacebernoullifànhánkōngjiānzhōngguǎngyìjìshùsuànzidebiǎoshì
AT chenjiachénjiā representationofgeneralizednumberoperatoractingonthebernoullifunctionalsspacebernoullifànhánkōngjiānzhōngguǎngyìjìshùsuànzidebiǎoshì
AT konghuafangkǒnghuáfāng representationofgeneralizednumberoperatoractingonthebernoullifunctionalsspacebernoullifànhánkōngjiānzhōngguǎngyìjìshùsuànzidebiǎoshì
AT xueruixuēruǐ representationofgeneralizednumberoperatoractingonthebernoullifunctionalsspacebernoullifànhánkōngjiānzhōngguǎngyìjìshùsuànzidebiǎoshì
AT chengxiuqiangchéngxiùqiáng representationofgeneralizednumberoperatoractingonthebernoullifunctionalsspacebernoullifànhánkōngjiānzhōngguǎngyìjìshùsuànzidebiǎoshì