Characterization of Microstructure, Weld Heat Input, and Mechanical Properties of Mg–Al–Zn Alloy GTA Weldments

The present study investigated the influence of welding speed on the microstructure, hardness, and tensile properties of the AZ31 Mg alloy gas tungsten arc (GTA) welds that were prepared using alternating current (AC). A microstructural examination of the weld metal and base metal was performed usin...

Full description

Bibliographic Details
Main Authors: Nagumothu Kishore Babu, Mahesh Kumar Talari, Prakash Srirangam, Abdullah Yahia AlFaify, Ateekh Ur Rehman
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/9/4417
Description
Summary:The present study investigated the influence of welding speed on the microstructure, hardness, and tensile properties of the AZ31 Mg alloy gas tungsten arc (GTA) welds that were prepared using alternating current (AC). A microstructural examination of the weld metal and base metal was performed using stereo, optical, and scanning electron microscopy (HR-SEM and EDS) techniques. The microstructure of all fusion zones consists of two parts: a columnar zone, adjacent to the fusion boundary, and equiaxed grains, in the centre of the weld fusion zone. It is shown that the average width of the equiaxed zone present at the centre of the fusion zone increases with increasing welding speed. Metallographic examination shows that the highest welding speed (5 mm/s) results in the smallest average grain size. The welds prepared with high welding speed exhibit an increase in strength, hardness, and ductility compared with other welding speeds, which is attributed to low heat input.
ISSN:2076-3417