Vertical wind speed extrapolation using regularized extreme learning machine
The cost of measuring wind speed (WS) increases significantly with mast heights. Therefore, it is required to have a method to estimate WS at hub height without the need to use measuring masts. This paper examines using the Regularized Extreme Learning Machine (RELM) to extrapolate WS at higher alti...
Hoofdauteurs: | Nuha H., Mohandes M., Rehman S., A-Shaikhi Ali |
---|---|
Formaat: | Artikel |
Taal: | English |
Gepubliceerd in: |
University of Belgrade - Faculty of Mechanical Engineering, Belgrade
2022-01-01
|
Reeks: | FME Transactions |
Onderwerpen: | |
Online toegang: | https://scindeks-clanci.ceon.rs/data/pdf/1451-2092/2022/1451-20922203412N.pdf |
Gelijkaardige items
-
Vertical wind speed extrapolation using statistical approaches
door: Nuha Hilal H., et al.
Gepubliceerd in: (2024-01-01) -
Vertical wind speed extrapolation model using long short‐term memory and particle swarm optimization
door: Ali Al‐Shaikhi, et al.
Gepubliceerd in: (2022-12-01) -
Wind Speed Extrapolation Using Machine Learning Methods and LiDAR Measurements
door: M. A. Mohandes, et al.
Gepubliceerd in: (2018-01-01) -
Improving Vertical Wind Speed Extrapolation Using Short-Term Lidar Measurements
door: Alexander Basse, et al.
Gepubliceerd in: (2020-03-01) -
Machine Learning Algorithms for Vertical Wind Speed Data Extrapolation: Comparison and Performance Using Mesoscale and Measured Site Data
door: Luis Baquero, et al.
Gepubliceerd in: (2022-07-01)