Global land mapping of satellite-observed CO2 total columns using spatio-temporal geostatistics

This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO2 total column (XCO2) using spatio-temporal geostatistics, which makes full use of the joint spatial and temporal dependencies between observations. The mapping approach considers the lati...

Full description

Bibliographic Details
Main Authors: Zhao-Cheng Zeng, Liping Lei, Kimberly Strong, Dylan B. A. Jones, Lijie Guo, Min Liu, Feng Deng, Nicholas M. Deutscher, Manvendra K. Dubey, David W. T. Griffith, Frank Hase, Bradley Henderson, Rigel Kivi, Rodica Lindenmaier, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, Ralf Sussmann, Voltaire A. Velazco, Paul O. Wennberg, Hui Lin
Format: Article
Language:English
Published: Taylor & Francis Group 2017-04-01
Series:International Journal of Digital Earth
Subjects:
Online Access:http://dx.doi.org/10.1080/17538947.2016.1156777
_version_ 1797678640610148352
author Zhao-Cheng Zeng
Liping Lei
Kimberly Strong
Dylan B. A. Jones
Lijie Guo
Min Liu
Feng Deng
Nicholas M. Deutscher
Manvendra K. Dubey
David W. T. Griffith
Frank Hase
Bradley Henderson
Rigel Kivi
Rodica Lindenmaier
Isamu Morino
Justus Notholt
Hirofumi Ohyama
Christof Petri
Ralf Sussmann
Voltaire A. Velazco
Paul O. Wennberg
Hui Lin
author_facet Zhao-Cheng Zeng
Liping Lei
Kimberly Strong
Dylan B. A. Jones
Lijie Guo
Min Liu
Feng Deng
Nicholas M. Deutscher
Manvendra K. Dubey
David W. T. Griffith
Frank Hase
Bradley Henderson
Rigel Kivi
Rodica Lindenmaier
Isamu Morino
Justus Notholt
Hirofumi Ohyama
Christof Petri
Ralf Sussmann
Voltaire A. Velazco
Paul O. Wennberg
Hui Lin
author_sort Zhao-Cheng Zeng
collection DOAJ
description This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO2 total column (XCO2) using spatio-temporal geostatistics, which makes full use of the joint spatial and temporal dependencies between observations. The mapping approach considers the latitude-zonal seasonal cycles and spatio-temporal correlation structure of XCO2, and obtains global land maps of XCO2, with a spatial grid resolution of 1° latitude by 1° longitude and temporal resolution of 3 days. We evaluate the accuracy and uncertainty of the mapping dataset in the following three ways: (1) in cross-validation, the mapping approach results in a high correlation coefficient of 0.94 between the predictions and observations, (2) in comparison with ground truth provided by the Total Carbon Column Observing Network (TCCON), the predicted XCO2 time series and those from TCCON sites are in good agreement, with an overall bias of 0.01 ppm and a standard deviation of the difference of 1.22 ppm and (3) in comparison with model simulations, the spatio-temporal variability of XCO2 between the mapping dataset and simulations from the CT2013 and GEOS-Chem are generally consistent. The generated mapping XCO2 data in this study provides a new global geospatial dataset in global understanding of greenhouse gases dynamics and global warming.
first_indexed 2024-03-11T23:02:52Z
format Article
id doaj.art-ab9c35932419458d87efc856d069ac4c
institution Directory Open Access Journal
issn 1753-8947
1753-8955
language English
last_indexed 2024-03-11T23:02:52Z
publishDate 2017-04-01
publisher Taylor & Francis Group
record_format Article
series International Journal of Digital Earth
spelling doaj.art-ab9c35932419458d87efc856d069ac4c2023-09-21T14:38:04ZengTaylor & Francis GroupInternational Journal of Digital Earth1753-89471753-89552017-04-0110442645610.1080/17538947.2016.11567771156777Global land mapping of satellite-observed CO2 total columns using spatio-temporal geostatisticsZhao-Cheng Zeng0Liping Lei1Kimberly Strong2Dylan B. A. Jones3Lijie Guo4Min Liu5Feng Deng6Nicholas M. Deutscher7Manvendra K. Dubey8David W. T. Griffith9Frank Hase10Bradley Henderson11Rigel Kivi12Rodica Lindenmaier13Isamu Morino14Justus Notholt15Hirofumi Ohyama16Christof Petri17Ralf Sussmann18Voltaire A. Velazco19Paul O. Wennberg20Hui Lin21Institute of Space and Earth Information Science, The Chinese University of Hong KongInstitute of Remote Sensing and Digital Earth, Chinese Academy of SciencesUniversity of TorontoUniversity of TorontoInstitute of Remote Sensing and Digital Earth, Chinese Academy of SciencesInstitute of Remote Sensing and Digital Earth, Chinese Academy of SciencesUniversity of TorontoUniversity of BremenLos Alamos National LaboratoryUniversity of WollongongKarlsruhe Institute of Technology, Institute for Meteorology and Climate Research (IMK-ASF)Los Alamos National LaboratoryFMI Arctic Research CenterLos Alamos National LaboratoryNational Institute for Environmental Studies (NIES)University of BremenEarth Observation Research Center, Japan Aerospace Exploration Agency (JAXA)University of BremenKarlsruhe Institute of Technology, IMK-IFUUniversity of WollongongCalifornia Institute of TechnologyInstitute of Space and Earth Information Science, The Chinese University of Hong KongThis study presents an approach for generating a global land mapping dataset of the satellite measurements of CO2 total column (XCO2) using spatio-temporal geostatistics, which makes full use of the joint spatial and temporal dependencies between observations. The mapping approach considers the latitude-zonal seasonal cycles and spatio-temporal correlation structure of XCO2, and obtains global land maps of XCO2, with a spatial grid resolution of 1° latitude by 1° longitude and temporal resolution of 3 days. We evaluate the accuracy and uncertainty of the mapping dataset in the following three ways: (1) in cross-validation, the mapping approach results in a high correlation coefficient of 0.94 between the predictions and observations, (2) in comparison with ground truth provided by the Total Carbon Column Observing Network (TCCON), the predicted XCO2 time series and those from TCCON sites are in good agreement, with an overall bias of 0.01 ppm and a standard deviation of the difference of 1.22 ppm and (3) in comparison with model simulations, the spatio-temporal variability of XCO2 between the mapping dataset and simulations from the CT2013 and GEOS-Chem are generally consistent. The generated mapping XCO2 data in this study provides a new global geospatial dataset in global understanding of greenhouse gases dynamics and global warming.http://dx.doi.org/10.1080/17538947.2016.1156777xco2acos-gosatspatio-temporal geostatisticsglobal mappinggeospatial dataset
spellingShingle Zhao-Cheng Zeng
Liping Lei
Kimberly Strong
Dylan B. A. Jones
Lijie Guo
Min Liu
Feng Deng
Nicholas M. Deutscher
Manvendra K. Dubey
David W. T. Griffith
Frank Hase
Bradley Henderson
Rigel Kivi
Rodica Lindenmaier
Isamu Morino
Justus Notholt
Hirofumi Ohyama
Christof Petri
Ralf Sussmann
Voltaire A. Velazco
Paul O. Wennberg
Hui Lin
Global land mapping of satellite-observed CO2 total columns using spatio-temporal geostatistics
International Journal of Digital Earth
xco2
acos-gosat
spatio-temporal geostatistics
global mapping
geospatial dataset
title Global land mapping of satellite-observed CO2 total columns using spatio-temporal geostatistics
title_full Global land mapping of satellite-observed CO2 total columns using spatio-temporal geostatistics
title_fullStr Global land mapping of satellite-observed CO2 total columns using spatio-temporal geostatistics
title_full_unstemmed Global land mapping of satellite-observed CO2 total columns using spatio-temporal geostatistics
title_short Global land mapping of satellite-observed CO2 total columns using spatio-temporal geostatistics
title_sort global land mapping of satellite observed co2 total columns using spatio temporal geostatistics
topic xco2
acos-gosat
spatio-temporal geostatistics
global mapping
geospatial dataset
url http://dx.doi.org/10.1080/17538947.2016.1156777
work_keys_str_mv AT zhaochengzeng globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT lipinglei globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT kimberlystrong globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT dylanbajones globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT lijieguo globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT minliu globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT fengdeng globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT nicholasmdeutscher globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT manvendrakdubey globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT davidwtgriffith globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT frankhase globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT bradleyhenderson globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT rigelkivi globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT rodicalindenmaier globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT isamumorino globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT justusnotholt globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT hirofumiohyama globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT christofpetri globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT ralfsussmann globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT voltaireavelazco globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT paulowennberg globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics
AT huilin globallandmappingofsatelliteobservedco2totalcolumnsusingspatiotemporalgeostatistics