Statistical Analysis of Community RNA Transcripts between Organic Carbon and Geogas-Fed Continental Deep Biosphere Groundwaters

ABSTRACT Life in water-filled bedrock fissures in the continental deep biosphere is broadly constrained by energy and nutrient availability. Although these communities are alive, robust studies comparing active populations and metabolic processes across deep aquifers are lacking. This study analyzed...

Full description

Bibliographic Details
Main Authors: Margarita Lopez-Fernandez, Elias Broman, Domenico Simone, Stefan Bertilsson, Mark Dopson
Format: Article
Language:English
Published: American Society for Microbiology 2019-08-01
Series:mBio
Subjects:
Online Access:https://journals.asm.org/doi/10.1128/mBio.01470-19
_version_ 1819199813314412544
author Margarita Lopez-Fernandez
Elias Broman
Domenico Simone
Stefan Bertilsson
Mark Dopson
author_facet Margarita Lopez-Fernandez
Elias Broman
Domenico Simone
Stefan Bertilsson
Mark Dopson
author_sort Margarita Lopez-Fernandez
collection DOAJ
description ABSTRACT Life in water-filled bedrock fissures in the continental deep biosphere is broadly constrained by energy and nutrient availability. Although these communities are alive, robust studies comparing active populations and metabolic processes across deep aquifers are lacking. This study analyzed three oligotrophic Fennoscandian Shield groundwaters, two “modern marine” waters that are replenished with organic carbon from the Baltic Sea and are likely less than 20 years old (171.3 and 415.4 m below sea level) and an extremely oligotrophic “thoroughly mixed” water (448.8 m below sea level) of unknown age that is composed of very old saline and marine waters. Cells were captured either using a sampling device that rapidly fixed RNA under in situ conditions or by filtering flowing groundwater over an extended period before fixation. Comparison of metatranscriptomes between the methods showed statistically similar transcript profiles for the respective water types, and they were analyzed as biological replicates. Study of the small subunit (SSU) rRNA confirmed active populations from all three domains of life, with many potentially novel unclassified populations present. Statistically supported differences between communities included heterotrophic sulfate-reducing bacteria in the modern marine water at 171.3 m below sea level that has a higher organic carbon content than do largely autotrophic populations in the H2- and CO2-fed thoroughly mixed water. While this modern marine water had signatures of methanogenesis, syntrophic populations were predominantly in the thoroughly mixed water. The study provides a first statistical evaluation of differences in the active microbial communities in groundwaters differentially fed by organic carbon or “geogases.” IMPORTANCE Despite being separated from the photosynthesis-driven surface by both distance and time, the deep biosphere is an important driver for the earth’s carbon and energy cycles. However, due to the difficulties in gaining access and low cell numbers, robust statistical omics studies have not been carried out, and this limits the conclusions that can be drawn. This study benchmarks the use of two separate sampling systems and demonstrates that they provide statistically similar RNA transcript profiles, importantly validating several previously published studies. The generated data are analyzed to identify statistically valid differences in active microbial community members and metabolic processes. The results highlight contrasting taxa and growth strategies in the modern marine waters that are influenced by recent infiltration of Baltic Sea water versus the hydrogen- and carbon dioxide-fed, extremely oligotrophic, thoroughly mixed water.
first_indexed 2024-12-23T03:22:18Z
format Article
id doaj.art-abc5f52717b346efbbd540ad540260f0
institution Directory Open Access Journal
issn 2150-7511
language English
last_indexed 2024-12-23T03:22:18Z
publishDate 2019-08-01
publisher American Society for Microbiology
record_format Article
series mBio
spelling doaj.art-abc5f52717b346efbbd540ad540260f02022-12-21T18:01:59ZengAmerican Society for MicrobiologymBio2150-75112019-08-0110410.1128/mBio.01470-19Statistical Analysis of Community RNA Transcripts between Organic Carbon and Geogas-Fed Continental Deep Biosphere GroundwatersMargarita Lopez-Fernandez0Elias Broman1Domenico Simone2Stefan Bertilsson3Mark Dopson4Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, SwedenCentre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, SwedenCentre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, SwedenDepartment of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, SwedenCentre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, SwedenABSTRACT Life in water-filled bedrock fissures in the continental deep biosphere is broadly constrained by energy and nutrient availability. Although these communities are alive, robust studies comparing active populations and metabolic processes across deep aquifers are lacking. This study analyzed three oligotrophic Fennoscandian Shield groundwaters, two “modern marine” waters that are replenished with organic carbon from the Baltic Sea and are likely less than 20 years old (171.3 and 415.4 m below sea level) and an extremely oligotrophic “thoroughly mixed” water (448.8 m below sea level) of unknown age that is composed of very old saline and marine waters. Cells were captured either using a sampling device that rapidly fixed RNA under in situ conditions or by filtering flowing groundwater over an extended period before fixation. Comparison of metatranscriptomes between the methods showed statistically similar transcript profiles for the respective water types, and they were analyzed as biological replicates. Study of the small subunit (SSU) rRNA confirmed active populations from all three domains of life, with many potentially novel unclassified populations present. Statistically supported differences between communities included heterotrophic sulfate-reducing bacteria in the modern marine water at 171.3 m below sea level that has a higher organic carbon content than do largely autotrophic populations in the H2- and CO2-fed thoroughly mixed water. While this modern marine water had signatures of methanogenesis, syntrophic populations were predominantly in the thoroughly mixed water. The study provides a first statistical evaluation of differences in the active microbial communities in groundwaters differentially fed by organic carbon or “geogases.” IMPORTANCE Despite being separated from the photosynthesis-driven surface by both distance and time, the deep biosphere is an important driver for the earth’s carbon and energy cycles. However, due to the difficulties in gaining access and low cell numbers, robust statistical omics studies have not been carried out, and this limits the conclusions that can be drawn. This study benchmarks the use of two separate sampling systems and demonstrates that they provide statistically similar RNA transcript profiles, importantly validating several previously published studies. The generated data are analyzed to identify statistically valid differences in active microbial community members and metabolic processes. The results highlight contrasting taxa and growth strategies in the modern marine waters that are influenced by recent infiltration of Baltic Sea water versus the hydrogen- and carbon dioxide-fed, extremely oligotrophic, thoroughly mixed water.https://journals.asm.org/doi/10.1128/mBio.01470-19deep biospheregroundwatersmetatranscriptomesprotein-coding RNArRNA
spellingShingle Margarita Lopez-Fernandez
Elias Broman
Domenico Simone
Stefan Bertilsson
Mark Dopson
Statistical Analysis of Community RNA Transcripts between Organic Carbon and Geogas-Fed Continental Deep Biosphere Groundwaters
mBio
deep biosphere
groundwaters
metatranscriptomes
protein-coding RNA
rRNA
title Statistical Analysis of Community RNA Transcripts between Organic Carbon and Geogas-Fed Continental Deep Biosphere Groundwaters
title_full Statistical Analysis of Community RNA Transcripts between Organic Carbon and Geogas-Fed Continental Deep Biosphere Groundwaters
title_fullStr Statistical Analysis of Community RNA Transcripts between Organic Carbon and Geogas-Fed Continental Deep Biosphere Groundwaters
title_full_unstemmed Statistical Analysis of Community RNA Transcripts between Organic Carbon and Geogas-Fed Continental Deep Biosphere Groundwaters
title_short Statistical Analysis of Community RNA Transcripts between Organic Carbon and Geogas-Fed Continental Deep Biosphere Groundwaters
title_sort statistical analysis of community rna transcripts between organic carbon and geogas fed continental deep biosphere groundwaters
topic deep biosphere
groundwaters
metatranscriptomes
protein-coding RNA
rRNA
url https://journals.asm.org/doi/10.1128/mBio.01470-19
work_keys_str_mv AT margaritalopezfernandez statisticalanalysisofcommunityrnatranscriptsbetweenorganiccarbonandgeogasfedcontinentaldeepbiospheregroundwaters
AT eliasbroman statisticalanalysisofcommunityrnatranscriptsbetweenorganiccarbonandgeogasfedcontinentaldeepbiospheregroundwaters
AT domenicosimone statisticalanalysisofcommunityrnatranscriptsbetweenorganiccarbonandgeogasfedcontinentaldeepbiospheregroundwaters
AT stefanbertilsson statisticalanalysisofcommunityrnatranscriptsbetweenorganiccarbonandgeogasfedcontinentaldeepbiospheregroundwaters
AT markdopson statisticalanalysisofcommunityrnatranscriptsbetweenorganiccarbonandgeogasfedcontinentaldeepbiospheregroundwaters