VaR Estimation with Quantum Computing Noise Correction Using Neural Networks

In this paper, we present the development of a quantum computing method for calculating the value at risk (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mi>a</mi><mi...

Cijeli opis

Bibliografski detalji
Glavni autori: Luis de Pedro, Raúl París Murillo, Jorge E. López de Vergara, Sergio López-Buedo, Francisco J. Gómez-Arribas
Format: Članak
Jezik:English
Izdano: MDPI AG 2023-10-01
Serija:Mathematics
Teme:
Online pristup:https://www.mdpi.com/2227-7390/11/20/4355
_version_ 1827720543815598080
author Luis de Pedro
Raúl París Murillo
Jorge E. López de Vergara
Sergio López-Buedo
Francisco J. Gómez-Arribas
author_facet Luis de Pedro
Raúl París Murillo
Jorge E. López de Vergara
Sergio López-Buedo
Francisco J. Gómez-Arribas
author_sort Luis de Pedro
collection DOAJ
description In this paper, we present the development of a quantum computing method for calculating the value at risk (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mi>a</mi><mi>R</mi></mrow></semantics></math></inline-formula>) for a portfolio of assets managed by a finance institution. We extend the conventional Monte Carlo algorithm to calculate the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mi>a</mi><mi>R</mi></mrow></semantics></math></inline-formula> of an arbitrary number of assets by employing random variable algebra and Taylor series approximation. The resulting algorithm is suitable to be executed in real quantum computers. However, the noise affecting current quantum computers renders them almost useless for the task. We present a methodology to mitigate the noise impact by using neural networks to compensate for the noise effects. The system combines the output from a real quantum computer with the neural network processing. The feedback is used to fine tune the quantum circuits. The results show that this approach is useful for estimating the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mi>a</mi><mi>R</mi></mrow></semantics></math></inline-formula> in finance institutions, particularly when dealing with a large number of assets. We demonstrate the validity of the proposed method with up to 139 assets. The accuracy of the method is also proven. We achieved an error of less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>%</mo></mrow></semantics></math></inline-formula> in the empirical measurements with respect to the parametric model.
first_indexed 2024-03-10T21:04:58Z
format Article
id doaj.art-abca54455690439f8765fc1270df8339
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T21:04:58Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-abca54455690439f8765fc1270df83392023-11-19T17:14:50ZengMDPI AGMathematics2227-73902023-10-011120435510.3390/math11204355VaR Estimation with Quantum Computing Noise Correction Using Neural NetworksLuis de Pedro0Raúl París Murillo1Jorge E. López de Vergara2Sergio López-Buedo3Francisco J. Gómez-Arribas4Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainEscuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainEscuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainEscuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainEscuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainIn this paper, we present the development of a quantum computing method for calculating the value at risk (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mi>a</mi><mi>R</mi></mrow></semantics></math></inline-formula>) for a portfolio of assets managed by a finance institution. We extend the conventional Monte Carlo algorithm to calculate the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mi>a</mi><mi>R</mi></mrow></semantics></math></inline-formula> of an arbitrary number of assets by employing random variable algebra and Taylor series approximation. The resulting algorithm is suitable to be executed in real quantum computers. However, the noise affecting current quantum computers renders them almost useless for the task. We present a methodology to mitigate the noise impact by using neural networks to compensate for the noise effects. The system combines the output from a real quantum computer with the neural network processing. The feedback is used to fine tune the quantum circuits. The results show that this approach is useful for estimating the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mi>a</mi><mi>R</mi></mrow></semantics></math></inline-formula> in finance institutions, particularly when dealing with a large number of assets. We demonstrate the validity of the proposed method with up to 139 assets. The accuracy of the method is also proven. We achieved an error of less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>%</mo></mrow></semantics></math></inline-formula> in the empirical measurements with respect to the parametric model.https://www.mdpi.com/2227-7390/11/20/4355neural networkqubitquantum computingMonte Carlovalue at risk (<i>VaR</i>)
spellingShingle Luis de Pedro
Raúl París Murillo
Jorge E. López de Vergara
Sergio López-Buedo
Francisco J. Gómez-Arribas
VaR Estimation with Quantum Computing Noise Correction Using Neural Networks
Mathematics
neural network
qubit
quantum computing
Monte Carlo
value at risk (<i>VaR</i>)
title VaR Estimation with Quantum Computing Noise Correction Using Neural Networks
title_full VaR Estimation with Quantum Computing Noise Correction Using Neural Networks
title_fullStr VaR Estimation with Quantum Computing Noise Correction Using Neural Networks
title_full_unstemmed VaR Estimation with Quantum Computing Noise Correction Using Neural Networks
title_short VaR Estimation with Quantum Computing Noise Correction Using Neural Networks
title_sort var estimation with quantum computing noise correction using neural networks
topic neural network
qubit
quantum computing
Monte Carlo
value at risk (<i>VaR</i>)
url https://www.mdpi.com/2227-7390/11/20/4355
work_keys_str_mv AT luisdepedro varestimationwithquantumcomputingnoisecorrectionusingneuralnetworks
AT raulparismurillo varestimationwithquantumcomputingnoisecorrectionusingneuralnetworks
AT jorgeelopezdevergara varestimationwithquantumcomputingnoisecorrectionusingneuralnetworks
AT sergiolopezbuedo varestimationwithquantumcomputingnoisecorrectionusingneuralnetworks
AT franciscojgomezarribas varestimationwithquantumcomputingnoisecorrectionusingneuralnetworks