Maximum principle and existence of positive solutions for nonlinear systems involving degenerate p-Laplacian operators

We study the maximum principle and existence of positive solutions for the nonlinear system egin{gather*} -Delta _{p,_{P}}u=a(x)|u|^{p-2}u+b(x)|u|^{alpha }|v|^{eta }v+f quad ext{in } Omega , \ -Delta _{Q,q}v=c(x)|u|^{alpha }|v|^{eta }u+d(x)|v|^{q-2}v+g quad ext{in } Omega , \ u=v=0 quad ext{on }p...

Full description

Bibliographic Details
Main Authors: Salah A. Khafagy, Hassan M. Serag
Format: Article
Language:English
Published: Texas State University 2007-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2007/66/abstr.html
Description
Summary:We study the maximum principle and existence of positive solutions for the nonlinear system egin{gather*} -Delta _{p,_{P}}u=a(x)|u|^{p-2}u+b(x)|u|^{alpha }|v|^{eta }v+f quad ext{in } Omega , \ -Delta _{Q,q}v=c(x)|u|^{alpha }|v|^{eta }u+d(x)|v|^{q-2}v+g quad ext{in } Omega , \ u=v=0 quad ext{on }partial Omega , end{gather*} where the degenerate p-Laplacian defined as $Delta _{p,_{P}}u=mathop{m div}[P(x)| abla u|^{p-2} abla u]$. We give necessary and sufficient conditions for having the maximum principle for this system and then we prove the existence of positive solutions for the same system by using an approximation method.
ISSN:1072-6691